Imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are widely used in diagnostics, clinical studies, and treatment planning. Automatic algorithms for image analysis have thus become an invaluable tool in medicine. Examples of this are two- and three-dimensional visualizations, image segmentation, and the registration of all anatomical structure and pathology types. In this context, we introduce Studierfenster ( www.studierfenster.at ): a free, non-commercial open science client-server framework for (bio-)medical image analysis. Studierfenster offers a wide range of capabilities, including the visualization of medical data (CT, MRI, etc.) in two-dimensional (2D) and three-dimensional (3D) space in common web browsers, such as Google Chrome, Mozilla Firefox, Safari, or Microsoft Edge. Other functionalities are the calculation of medical metrics (dice score and Hausdorff distance), manual slice-by-slice outlining of structures in medical images, manual placing of (anatomical) landmarks in medical imaging data, visualization of medical data in virtual reality (VR), and a facial reconstruction and registration of medical data for augmented reality (AR). More sophisticated features include the automatic cranial implant design with a convolutional neural network (CNN), the inpainting of aortic dissections with a generative adversarial network, and a CNN for automatic aortic landmark detection in CT angiography images. A user study with medical and non-medical experts in medical image analysis was performed, to evaluate the usability and the manual functionalities of Studierfenster. When participants were asked about their overall impression of Studierfenster in an ISO standard (ISO-Norm) questionnaire, a mean of 6.3 out of 7.0 possible points were achieved. The evaluation also provided insights into the results achievable with Studierfenster in practice, by comparing these with two ground truth segmentations performed by a physician of the Medical University of Graz in Austria. In this contribution, we presented an online environment for (bio-)medical image analysis. In doing so, we established a client-server-based architecture, which is able to process medical data, especially 3D volumes. Our online environment is not limited to medical applications for humans. Rather, its underlying concept could be interesting for researchers from other fields, in applying the already existing functionalities or future additional implementations of further image processing applications. An example could be the processing of medical acquisitions like CT or MRI from animals [Clinical Pharmacology & Therapeutics, 84(4):448-456, 68], which get more and more common, as veterinary clinics and centers get more and more equipped with such imaging devices. Furthermore, applications in entirely non-medical research in which images/volumes need to be processed are also thinkable, such as those in optical measuring techniques, astronomy, or archaeology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782222PMC
http://dx.doi.org/10.1007/s10278-021-00574-8DOI Listing

Publication Analysis

Top Keywords

image analysis
16
medical data
16
medical
13
open science
8
medical imaging
8
bio-medical image
8
visualization medical
8
network cnn
8
online environment
8
studierfenster
6

Similar Publications

White Matter Fiber Bundle Alterations Correlate with Gait and Cognitive Impairments in Parkinson's Disease based on HARDI Data.

Curr Med Imaging

January 2025

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.

Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.

Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.

View Article and Find Full Text PDF

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!