Removal of As(V) from wastewaters using magnetic iron oxides formed by zero-valent iron electrocoagulation.

J Environ Manage

Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. Electronic address:

Published: April 2022

Electrocoagulation of zero-valent iron has been widely applied to the removal of dissolved arsenic, but the solid-liquid separation of arsenic-containing precipitates remains technically challenging. In this work, zero-valent iron was electrochemically oxidized to magnetic iron oxides for the removal of As(Ⅴ) from simulated and actual mining wastewaters. The results indicated that lepidocrocite was formed when zero-valent iron was oxidized by dissolved oxygen, but ferrihydrite and green rust were first formed and then transformed to magnetic iron oxides (mainly magnetite and maghemite) in the electrochemical oxidation from 0 to 0.9 V (vs. SCE), which facilitates the adsorption of As(V) and subsequent solid-liquid separation under a magnetic field. In simulated As(V)-containing solution with initial pH 7.0, zero-valent iron was electrochemically oxidized to magnetite and maghemite at 0.6 V (vs. SCE) for 2 h. The As(V) concentration first decreased from 5127.5 to 26.8 μg L with a removal ratio of 99.5%. In actual mining wastewaters, zero-valent iron was electrochemically oxidized to maghemite at 0.6 V (vs. SCE) for 24 h, and the As(V) concentration decreased from 5486.4 to 3.6 μg L with a removal ratio of 99.9%. The removal ratio of As(V) increased slightly with increasing potential, and increased first and then decreased with increasing initial pH. Compared with that of SO and NO, the presence of Cl significantly enhanced the removal of As(V). This work provides a highly efficient, facile and low-cost technique for the treatment of arsenic-containing wastewaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114519DOI Listing

Publication Analysis

Top Keywords

zero-valent iron
24
magnetic iron
12
iron oxides
12
iron electrochemically
12
electrochemically oxidized
12
removal ratio
12
iron
9
removal asv
8
formed zero-valent
8
solid-liquid separation
8

Similar Publications

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Efficient Degradation of Ciprofloxacin in Water Using nZVI/g-CN Enhanced Dielectric Barrier Discharge Plasma Process.

Environ Res

January 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.

View Article and Find Full Text PDF

The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg L) than traditional catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!