Insights into the effects of Fenton oxidation on PAH removal and indigenous bacteria in aged subsurface soil.

Environ Pollut

Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, No 27 Xisanhuan North Road, Haidian District, Beijing, 100089, China.

Published: April 2022

Combined chemical oxidation and bioremediation is a promising method of treating polycyclic aromatic hydrocarbon (PAH) contaminated soil, wherein indigenous soil bacteria play a critical role in the subsequent biodegradation of PAHs after the depletion of the oxidant. In this study, different Fenton conditions were applied by varying either the oxidation mode (conventional Fenton (CF), Fenton-like (LF), modified Fenton (MF), and graded modified Fenton (GMF)) or the HO dosage (0%, 3%, 6%, and 10% (v/v)) to treat PAH contaminated soil. The results revealed that when equal dosages of HO are applied, PAHs are significantly removed following oxidation treatment, and the removal percentages obeyed the following sequence: CF > GMF > MF > LF. In addition, higher dosages of HO improved the PAH removal from soil treated with the same oxidation mode. The ranges of total PAHs removal efficiencies in the soil added 3%, 6%, and 10% of HO (v/v) were 18.04%∼59.48%, 31.88%∼71.83%, and 47.56%∼78.16%, respectively. The PAH removal efficiency decreased with increasing ring numbers for the same oxidation treatment. However, the negative influences on soil bacterial abundance, community composition, and function were observed after Fenton treatment. After Fenton oxidation, the bacterial abundance in the soil received 3%, 6%, and 10% of HO (v/v) decreased 1.96-2.69, 2.44-3.22, and 3.09-3.42 orders of magnitude compared to the untreated soil. The soil bacterial abundance tended to be impacted by the oxidation mode and HO dosage simultaneously. While the main factor influencing the soil bacterial community composition was the HO dosages. The results of this study showed that different oxidation mode and HO dosage exhibited different effects on PAHs removal and soil bacteria (including abundance, community composition, and function), and there was a trade-off between the removal of PAHs and the adverse impact on soil bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.118872DOI Listing

Publication Analysis

Top Keywords

oxidation mode
16
soil
13
pah removal
12
soil bacteria
12
10% v/v
12
soil bacterial
12
bacterial abundance
12
community composition
12
oxidation
9
fenton oxidation
8

Similar Publications

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

The removal of soot particles via high-performance catalysts is a critical area of research due to the growing concern regarding air pollution. Among various potential catalysts suitable for soot oxidation, cerium oxide-based materials have shown considerable promise. In this study, CeO samples obtained using a range of preparation methods (including hydrothermal synthesis (HT), sonochemical synthesis (SC), and hard template synthesis (TS)) were tested in soot combustion.

View Article and Find Full Text PDF

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!