Measuring the surrogate parameters total organic carbon and dissolved organic carbon (TOC/DOC) is not adequate, alone, to reveal nuances in organic character for optimizing treatment in potable water reuse. Alternatively, analyzing each organic compound contributing to the surrogate measurement is not possible. As an additional analytical tool applied between these extremes, the use of excitation-emission matrix fluorescence spectroscopy with PARAllel FACtor (EEM-PARAFAC) analysis was investigated in this research to track categories (components) or families of organic compounds during treatment in recycled water schemes. Although not all organic molecules fluoresce, many do, and fluorescence helps track their fate through water treatment processes. The sites investigated in this research were Lake Lanier, in Gwinnett County, Georgia, USA; the F. Wayne Hill Water Resources Center (FWH WRC) advanced wastewater treatment facility; and two pilot facilities operated in parallel representing the current indirect potable reuse (IPR) scheme as well as a pilot that evaluated direct potable reuse (DPR). A four-component nonnegativity PARAFAC model-elucidating protein-like (including tyrosine- and tryptophan-like fluorescence in a single component), soluble microbial product (SMP)-like, fulvic-like, and humic-like components-was fitted to the data. Each of the four components was spectrally and mathematically separated, implying that the fluorescing SMP-like component was not comprised of protein-, fulvic-, or humic-like components. PARAFAC excitation loadings with dual (double) pairs of fluorescing regions centered at the same emission wavelengths but different excitation wavelengths oriented parallel to the excitation axis and perpendicular to the emission axis were attributed to individual PARAFAC components. Significantly, the observation of PARAFAC emission loadings with multiple peaks-where the protein-like component exhibited fluorescence in both protein and fulvic/humic regions-is proposed to signify an intermolecular energy transfer (< 10 nm). Correct identification of EEM-PARAFAC components is fundamental to understanding water treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153070DOI Listing

Publication Analysis

Top Keywords

potable water
8
water reuse
8
organic carbon
8
water treatment
8
potable reuse
8
water
6
organic
6
treatment
5
components
5
development fluorescence
4

Similar Publications

Despite their potential risks to human health and the environment at ng/L to μg/L concentrations, there has been relatively little effort to measure trace organic compounds (TOrCs) in surface waters of Central America. The concentrations of eighteen TOrCs detected at eleven surface water sites in the Lempa River basin of El Salvador and four sources of drinking water for the cities of San Salvador, Antiguo Cuscatlán, Soyapango, and Santa Tecla are reported here. All samples were analyzed via liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

The potential of urinary miR-200c-3p as a biomarker of fluorosis in rats.

Ecotoxicol Environ Saf

January 2025

Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province 150081, China. Electronic address:

Fluorine is a strong oxidizing element and excessive intake can have harmful effects, particularly on the body's calcified tissues. Recent studies have demonstrated a link between miRNA and fluorosis. This study aimed to evaluate the time-dose-effect relationship of miR-200c-3p in plasma, urine and cartilage of rats with drinking water fluorosis, and to explore its potential as a biomarker.

View Article and Find Full Text PDF

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas.

J Environ Manage

January 2025

Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:

Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.

View Article and Find Full Text PDF

Electrochemical water treatment: Review of different approaches.

J Environ Manage

January 2025

Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India; University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, 140413, Panjab, India. Electronic address:

The continued development in agriculture, the rapid growth of industrialization, and last but not least, the increase in the global population adversely affects the environment. The availability of drinking water decreases every year with the rise in water pollution, which is the consequence of the failure of conventional approaches to the water treatment process. This review will provide a comprehensive and detailed analysis of the electrochemical water treatment processes, as these techniques have several benefits over conventional methods, such as being cost-effective, easily applicable, selective, and broad applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!