AI Article Synopsis

  • Climate change is causing significant declines in global biodiversity, and this study focuses on how it affects wetland macroinvertebrates, which are crucial to these ecosystems.
  • Researchers analyzed data from 769 minimally impacted wetlands worldwide to understand the impact of temperature and precipitation on the diversity of 144 macroinvertebrate families.
  • The findings revealed that maximum temperature is the key factor influencing macroinvertebrate richness and diversity, with significant variations based on wetland type and climate conditions, indicating that warmer, dry regions face the highest risk of losing these essential organisms.

Article Abstract

Climate change is rapidly driving global biodiversity declines. How wetland macroinvertebrate assemblages are responding is unclear, a concern given their vital function in these ecosystems. Using a data set from 769 minimally impacted depressional wetlands across the globe (467 temporary and 302 permanent), we evaluated how temperature and precipitation (average, range, variability) affects the richness and beta diversity of 144 macroinvertebrate families. To test the effects of climatic predictors on macroinvertebrate diversity, we fitted generalized additive mixed-effects models (GAMM) for family richness and generalized dissimilarity models (GDMs) for total beta diversity. We found non-linear relationships between family richness, beta diversity, and climate. Maximum temperature was the main climatic driver of wetland macroinvertebrate richness and beta diversity, but precipitation seasonality was also important. Assemblage responses to climatic variables also depended on wetland water permanency. Permanent wetlands from warmer regions had higher family richness than temporary wetlands. Interestingly, wetlands in cooler and dry-warm regions had the lowest taxonomic richness, but both kinds of wetlands supported unique assemblages. Our study suggests that climate change will have multiple effects on wetlands and their macroinvertebrate diversity, mostly via increases in maximum temperature, but also through changes in patterns of precipitation. The most vulnerable wetlands to climate change are likely those located in warm-dry regions, where entire macroinvertebrate assemblages would be extirpated. Montane and high-latitude wetlands (i.e., cooler regions) are also vulnerable to climate change, but we do not expect entire extirpations at the family level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153052DOI Listing

Publication Analysis

Top Keywords

climate change
16
beta diversity
16
richness beta
12
family richness
12
wetland macroinvertebrate
8
macroinvertebrate assemblages
8
wetlands
8
macroinvertebrate diversity
8
maximum temperature
8
wetlands cooler
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!