Members of the CAP protein superfamily are present in all kingdoms of life and have been implicated in many different processes, including pathogen defense, immune evasion, sperm maturation, and cancer progression. Most CAP proteins are secreted glycoproteins and share a unique conserved αβα sandwich fold. The precise mode of action of this class of proteins, however, has remained elusive. Saccharomyces cerevisiae has three CAP family members, termed pathogen related in yeast (Pry). We have previously shown that Pry1 and Pry2 export sterols in vivo and that they bind sterols in vitro. This sterol binding and export function of yeast Pry proteins is conserved in the mammalian CRISP proteins and other CAP superfamily members. CRISP3 is an abundant protein of the human seminal plasma and interacts with prostate secretory protein of 94 amino acids (PSP94), another major protein component in the seminal plasma. Here we examine whether the interaction between CRISP proteins and PSP94 affects the sterol binding function of CAP family members. We show that coexpression of PSP94 with CAP proteins in yeast abolished their sterol export function and the interaction between PSP94 and CAP proteins inhibits sterol binding in vitro. In addition, mutations that affect the formation of the PSP94-CRISP2 heteromeric complex restore sterol binding. Of interest, we found the interaction of PSP94 with CRISP2 is sensitive to high calcium concentrations. The observation that PSP94 modulates the sterol binding function of CRISP2 in a calcium-dependent manner has potential implications for the role of PSP94 and CRISP2 in prostate physiology and progression of prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8857485PMC
http://dx.doi.org/10.1016/j.jbc.2022.101600DOI Listing

Publication Analysis

Top Keywords

sterol binding
24
cap proteins
12
prostate secretory
8
secretory protein
8
inhibits sterol
8
binding export
8
cap
8
cap protein
8
cap family
8
family members
8

Similar Publications

Tea (Camellia sinensis) Seed Saponins Act as Sebosuppression Agents via the AMPK/mTOR Pathway.

J Cosmet Dermatol

January 2025

Cosmetic Research Center, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.

Background: Excessive lipogenesis of the skin triggers some dermatological concerns, such as enlarged pores, acne, and blackheads. Although topical drug treatments can offer temporary relief, their prolonged usage may lead to side effects of dryness, irritation, or allergic reactions. Consequently, the development of safer and efficacious ingredients in cosmetics for managing sebum overproduction represents a significant yet challenging endeavor.

View Article and Find Full Text PDF

Background: Bladder cancer (BC) is a malignant tumor. Methyltransferase-like 7B (MEETL7B) is a methyltransferase and its role in BC has not yet been revealed.

Method: Stable METTL7B knockdown or overexpression were achieved by lentiviral transduction in SW780 and TCCSUP cell lines.

View Article and Find Full Text PDF

In addition to being linked to an excess of lipid accumulation in the liver, being overweight or obese can also result in disorders of lipid metabolism. There is limited understanding regarding whether different levels of protein intake within an energy-restricted diet affect liver lipid metabolism in overweight and obese rats and whether these effects differ by gender, despite the fact that both high protein intake and calorie restriction can improve intrahepatic lipid. The purpose of this study is to explore the effects and mechanisms of different protein intakes within a calorie-restricted diet on liver lipid metabolism, and to investigate whether these effects exhibit gender differences.

View Article and Find Full Text PDF

This study aimed to assess the causal relationship between lipidome and female reproductive diseases (FRDs) using an advanced series of Mendelian randomization (MR) methods. This study utilized genome-wide association study (GWAS) summary statistics encompassing 179 lipidomes and six prevalent FRDs, namely polycystic ovary syndrome (PCOS), endometriosis, uterine fibroid, female infertility, uterine endometrial cancer, and ovarian cancer. The two-sample MR (TSMR) approach was employed to investigate the causal relationships, with further validation using false discovery rate (FDR) and multivariable MR (MVMR) methods.

View Article and Find Full Text PDF

Vitamin D-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 T cells directly and indirectly via competition for their shared co-receptor RXR.

Scand J Immunol

January 2025

LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!