Inhibition of TRPC1, TRPM4 and CHRNA6 ion channels ameliorates depression-like behavior in rats.

Behav Brain Res

Firat University, Faculty of Medicine, Department of Medical Biology, 23119 Elazig, Turkey. Electronic address:

Published: April 2022

The roles of ion channels, miRNAs and, neurotransmitters in the pathophysiology of major depressive disorder (MDD) are not yet fully elucidated. The current study aims to investigate ion channel gene expressions in the brain, the therapeutic efficacies of TRPC1, TRPM4, and CHRNA6 inhibitors, miRNAs specific to these ion channels and, neurotransmitter interactions in a chronic unpredictable mild stress (CUMS) induced MDD rat model. 48 two-month-old male albino Wistar rats were divided into Control, CUMS, Sham, CUMS+Pico145 (TRPC1 inhibitor), CUMS+ 9-Phe (TRPM4 inhibitor), and CUMS+BPiDl (CHRNA6 inhibitor) groups. Seven-week CUMS was used to induce MDD. Inhibitors were administered subacutely on the final of CUMS. Rats were subjected to behavioral tests. Gene expression levels were analyzed using qRT-PCR and neurotransmitter levels using ELISA. CUMS lead to a significant upregulation in the expression of channels in the hippocampus, and channels in the prefrontal cortex. Behavioral experiments determined the antidepressant effects as follows: Pico145 > BPiDl > 9-Phe. Compared to the Control, serotonin and noradrenaline levels remained unchanged, whereas dopamine levels increased. Acetylcholine levels decreased in CUMS and CUMS+Pico145 groups. CUMS significantly altered the expression of 6 miRNAs in the brain. BPiDl upregulated the expression of miR-6334 and Pico145 upregulated the expression of miR-135b-5p and miR-875 in the prefrontal cortex. The interactions of ion channels, miRNAs, and disruptions of neurotransmitter networks can play an important role in the pathophysiology of MDD. Moreover, as shown in this study, ion channel inhibitors have significant potential in the treatment of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2022.113765DOI Listing

Publication Analysis

Top Keywords

ion channels
16
trpc1 trpm4
8
trpm4 chrna6
8
channels mirnas
8
ion channel
8
prefrontal cortex
8
upregulated expression
8
cums
7
ion
6
channels
6

Similar Publications

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

AA-Stacked Hydrogen-Substituted Graphdiyne for Enhanced Lithium Storage.

Angew Chem Int Ed Engl

January 2025

Leibniz University Hanover: Leibniz Universitat Hannover, Institute for Solid State Physics, GERMANY.

Graphdiyne (GDY) has been considered a promising electrode material for application in electrochemical energy storage. However, studies on GDY featuring an ordered interlayer stacking are lacking, which is supposed to be another effective way to increase lithium binding sites and diffusion pathways. Herein, we synthesized a hydrogen-substituted GDY (HsGDY) with a highly-ordered AA-stacking structure via a facile alcohol-thermal method.

View Article and Find Full Text PDF

Abdominal aortic aneurysm represents a critical pathology of the aorta that currently lacks effective pharmacological interventions. TNF receptor-associated factor 6 (TRAF6) has been established to be involved in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. However, its role in abdominal aortic aneurysm (AAA) remains unclear.

View Article and Find Full Text PDF

While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.

View Article and Find Full Text PDF

Constructing new-generation ion exchange membranes under confinement regime.

Natl Sci Rev

February 2025

Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.

Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!