A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms. | LitMetric

Chitosan biological molecule improves bactericidal competence of ceftazidime against Burkholderia pseudomallei biofilms.

Int J Biol Macromol

Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand; Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen, Thailand. Electronic address:

Published: March 2022

Biofilm-associated Burkholderia pseudomallei infections (melioidosis) are problematic because of reduced sensitivity to antibiotics and high frequency of relapse. Biofilm dispersal agents are essential to liberate the biofilm-encased cells, which then become planktonic and are more susceptible to antibiotics. This study aimed to evaluate the ability of deacetylated chitosan (dCS), an antimicrobial and antibiofilm biological macromolecule, to disrupt established biofilms, thus enabling ceftazidime (CAZ) to kill biofilm-embedded B. pseudomallei. We combined dCS with CAZ using a mechanical stirring method to generate dCS/CAZ. In combination, 1.25-2.5 mg ml dCS/1-2 μg ml CAZ acted synergistically to kill cells more effectively than did either dCS or CAZ alone. Notably, a combination of 5-10 mg ml dCS with 256-512 μg ml CAZ, prepared either by mechanical stirring (dCS/CAZ) or mixing (dCS + CAZ), drastically improved bactericidal activities against biofilm cells leading to a 3-6 log CFU reduction. Confocal laser-scanning microscope (CLSM) images revealed that 10 mg ml dCS/512 μg ml CAZ is by far the best formulation to diminish B. pseudomallei biofilm biomass and produces the lowest live/dead cell ratios of B. pseudomallei in biofilm matrix. Collectively, these findings emphasize the potential of novel therapeutic antibacterial and antibiofilm agents to fight against antibiotic-tolerant B. pseudomallei biofilm-associated infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.01.053DOI Listing

Publication Analysis

Top Keywords

burkholderia pseudomallei
8
dcs caz
8
mechanical stirring
8
pseudomallei biofilm
8
pseudomallei
6
caz
6
chitosan biological
4
biological molecule
4
molecule improves
4
improves bactericidal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!