Skin toxicity is a common safety concern associated with drugs that inhibit epidermal growth factor receptors as well as other targets involved in epidermal growth and differentiation. Recently, the use of a three-dimensional reconstructed human epidermis model enabled large-scale drug screening and showed potential for predicting skin toxicity. Although a decrease in epidermal thickness was often observed when the three-dimensional reconstructed tissues were exposed to drugs causing skin toxicity, the thickness evaluation of epidermal layers from a pathologist was subjective and not easily reproducible or scalable. In addition, the subtle differences in thickness among tissues, as well as the large number of samples tested, made cross-study comparison difficult when a manual evaluation strategy was used. The current study used deep learning and image-processing algorithms to measure the viable epidermal thickness from multiple studies and found that the measured thickness was not only significantly correlated with a pathologist's semi-quantitative evaluation but was also in close agreement with the quantitative measurement performed by pathologists. Moreover, a sensitivity of 0.8 and a specificity of 0.75 were achieved when predicting the toxicity of 18 compounds with clinical observations with these epidermal thickness algorithms. This approach is fully automated, reproducible, and highly scalable. It not only shows reasonable accuracy in predicting skin toxicity but also enables cross-study comparison and high-throughput compound screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajpath.2021.12.007 | DOI Listing |
Niger Med J
January 2025
Department of Medical Microbiology, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria.
Background: Anthrax is a life-threatening zoonotic disease caused by Gram-positive, spore-forming bacterium . It manifests as a cutaneous, gastrointestinal, and respiratory disease. The cutaneous form ranges from a self-limiting lesion to severe edematous lesions with toxemic shock.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
January 2025
Department of Biochemistry, School of Medicine, University of Costa Rica, San José, Costa Rica.
Background: Fish venoms have been poorly characterized and the available information about their composition suggests they are uncomplicated secretions that, combined with epidermal mucus, could induce an inflammatory reaction, excruciating pain, and, in some cases, local tissue injuries.
Methods: In this study, we characterized the 24-hour histopathological effects of lionfish venom in a mouse experimental model by testing the main fractions obtained by size exclusion-HPLC. By partial proteomics analysis, we also correlated these effects with the presence of some potentially toxic venom components.
Phenyl arsine oxide (PAO) is a vesicant, similar to Lewisite, a potential chemical warfare agent and an environmental contaminant. PAO-induced skin burns can trigger acute organ injury, including lungs. We have recently demonstrated that PAO burns can also has a delayed toxicity, although the specific mechanism/s remain to be determined.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, Telangana, India.
The Janus kinase inhibitor tofacitinib (TOF) is an FDA-approved drug for rheumatoid arthritis (RA) treatment, but its long-term oral use leads to significant systemic side effects. The present research aimed to conquer these challenges by formulating hyaluronic-acid-coated transethosomes (HA-TOF-TE), a novel system for targeted, topical delivery of TOF to reduce systemic toxicity and improve therapeutic efficacy. Transethosomes were synthesized via the cold sonication technique with HA functionalization enabling CD44 receptor-mediated targeting of inflamed synovial tissue.
View Article and Find Full Text PDFBioorg Chem
January 2025
School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China. Electronic address:
Atopic dermatitis (AD) is difficult to cure as a chronic inflammatory skin disease. In the present study, a series of N-heterocyclic functionalized chalcone derivatives have been prepared to investigate their in vitro and in vivo anti-inflammatory activities. The results indicated that many derivatives could effectively inhibit NO generation with low toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!