Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Progressive fibrosing interstitial lung disease (ILD) is characterised by parenchymal scar formation, leading to high morbidity and mortality. The ability to predict this phenotype remains elusive. We conducted a proteomic analysis to identify novel plasma biomarkers of progressive fibrosing ILD and developed a proteomic signature to predict this phenotype.
Methods: Relative plasma concentrations for 368 biomarkers were determined with use of a semi-quantitative, targeted proteomic platform in patients with connective tissue disease-associated ILD, chronic hypersensitivity pneumonitis, or unclassifiable ILD who provided research blood draws at the University of California (discovery cohort) and the University of Texas (validation cohort). Univariable logistic regression was used to identify individual biomarkers associated with 1-year ILD progression, defined as death, lung transplant, or 10% or greater relative forced vital capacity (FVC) decline. A proteomic signature of progressive fibrosing ILD was then derived with use of machine learning in the University of California cohort and validated in the University of Texas cohort.
Findings: The discovery cohort comprised 385 patients (mean age 63·6 years, 59% female) and the validation cohort comprised 204 patients (mean age 60·7 years, 61% female). 31 biomarkers were associated with progressive fibrosing ILD in the discovery cohort, with 17 maintaining an association in the validation cohort. Validated biomarkers showed a consistent association with progressive fibrosing ILD irrespective of ILD clinical diagnosis. A proteomic signature comprising 12 biomarkers was derived by machine learning and validated in the University of Texas cohort, in which it had a sensitivity of 0·90 and corresponding negative predictive value of 0·91, suggesting that approximately 10% of patients with a low-risk proteomic signature would experience ILD progression in the year after blood draw. Those with a low-risk proteomic signature experienced an FVC change of +85·7 mL (95% CI 6·9 to 164·4) and those with a high-risk signature experienced an FVC change of -227·1 mL (-286·7 to -167·5). A theoretical clinical trial restricted to patients with a high-risk proteomic signature would require 80% fewer patients than one designed without regard to proteomic signature.
Interpretation: 17 plasma biomarkers of progressive fibrosing ILD were identified and showed consistent associations across ILD subtypes. A proteomic signature of progressive fibrosing ILD could enrich clinical trial cohorts and avoid the need for antecedent progression when defining progressive fibrosing ILD for clinical trial enrolment.
Funding: National Heart Lung and Blood Institute.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177713 | PMC |
http://dx.doi.org/10.1016/S2213-2600(21)00503-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!