Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.12.044DOI Listing

Publication Analysis

Top Keywords

downregulation diacylglycerol
4
diacylglycerol kinase
4
kinase delta
4
delta contributes
4
contributes hyperglycemia-induced
4
hyperglycemia-induced insulin
4
insulin resistance
4
downregulation
1
kinase
1
delta
1

Similar Publications

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Immunomodulatory Effects of SPHK1 and Its Interaction with TFAP2A in Yellow Drum ().

Int J Mol Sci

December 2024

State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China.

Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the gene as closely associated with the resistance of yellow drum () to . Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa).

View Article and Find Full Text PDF

Hippo pathway activation causes multiple lipid derangements in a murine model of cardiomyopathy.

Biochim Biophys Acta Mol Cell Biol Lipids

December 2024

Department of Cardiology, Shaanxi Provincial Hospital, Xi'an, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. Electronic address:

Metabolic reprogramming occurs in cardiomyopathy and heart failure contributing to progression of the disease. Activation of cardiac Hippo pathway signaling has been implicated in mediating mitochondrial dysfunction and metabolic reprogramming in cardiomyopathy, albeit influence of Hippo pathway on lipid profile is unclear. Using a dual-omics approach, we determined alterations of cardiac lipids in a mouse model of cardiomyopathy due to enhanced Hippo signaling and explored molecular mechanisms.

View Article and Find Full Text PDF

Analysis of Lipid Metabolism in Adipose Tissue and Liver of Chinese Soft-Shelled Turtle During Hibernation.

Int J Mol Sci

November 2024

Key Laboratory for Aquatic Germplasm Innovation and Utilization of Jiangxi Province, School of Life Sciences, Nanchang University, Nanchang 330031, China.

Article Synopsis
  • Hibernation helps animals conserve energy by lowering their metabolic rate and aids survival in tough conditions, but the details of energy adaptation in hibernating ectotherms are still debated.
  • The study found decreased lipid levels and metabolism-related gene expression during hibernation, leading to reduced fat cell sizes and lipid content in the liver, along with lower serum lipid levels and increased glucose.
  • Transcriptomic and lipidomic analyses showed a suppression of lipid metabolism pathways and genes tied to fat breakdown (lipolysis) during hibernation, enhancing our understanding of how these animals adapt their energy use for survival.
View Article and Find Full Text PDF

New insights into the role of lipids in aroma formation during black tea processing revealed by integrated lipidomics and volatolomics.

Curr Res Food Sci

October 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.

Lipids are important tea aroma precursors. Due to the complexity of black tea processing involving both enzymatic and thermal reactions, the role of lipids in black tea aroma formation remained unclear. Herein, the dynamic changes of lipids and volatiles during black tea processing were simultaneously analyzed by lipidomics and volatolomics using ultra-high-performance liquid chromatography coupled to Q-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive) and gas chromatography-tandem mass spectrometry (GC-MS/MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!