The coronavirus disease 2019 (COVID-19) has become a substantial threat to the international health sector and the global economy. As of 26 December 2021, the number of mortalities resulting from COVID-19 exceeded 5.3 million worldwide. The absence of an effective non-vaccine treatment has prompted the quest for prophylactic agents that can be used to combat COVID-19. This study presents the feasibility of chicken egg yolk antibody (IgY) anti-receptor-binding domain (RBD) spike SARS-CoV-2 as a strong candidate to neutralize the virus for application in passive immunization. For the purpose of preclinical studies, we radiolabeled IgY anti-RBD spike SARS-CoV-2 with radionuclide iodine-131. This allowed us to evaluate several biological characteristics of IgY in vitro, in vivo, and ex vivo. The preclinical data suggest that IgY anti-RBD spike SARS-CoV-2 could specifically bind to the SARS-CoV-2 antigens; however, little uptake was observed in normal cells (MRC-5) (<2%). Furthermore, the ex vivo biodistribution study revealed that IgY predominantly accumulated in the trachea of normal mice compared to other organs. We also found that IgY possessed a good safety profile when used as an intranasal agent. Taken together, we propose that IgY anti-RBD spike SARS-CoV-2 has the potential for application in passive immunization against COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778912 | PMC |
http://dx.doi.org/10.3390/vaccines10010128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!