A compact, sensitive laser-based absorption sensor for multispecies monitoring of methane (CH), acetylene (CH) and ammonia (NH) was developed using a compact multipass gas cell. The gas cell is 8.8 cm long and has an effective optical path length of 3.0 m with a sampling volume of 75 mL. The sensor is composed of three fiber-coupled distributed feedback lasers operating near 1512 nm, 1532 nm and 1654 nm, an InGaAs photodetector and a custom-designed software for data acquisition, signal processing and display. The lasers were scanned over the target absorption features at 1 Hz. First-harmonic-normalized wavelength modulation spectroscopy ( = 3 kHz) with the second harmonic detection (WMS-2/1) is employed to eliminate the unwanted power fluctuations of the transmitted laser caused by aerosol/particles scattering, absorption and beam-steering. The multispecies sensor has excellent linear responses (R > 0.997) within the gas concentration range of 1-1000 ppm and shows a detection limit of 0.32 ppm for CH, 0.16 ppm for CH and 0.23 ppm for NH at 1 s response time. The Allan-Werle deviation analysis verifies the long-term stability of the sensor, indicating a minimal detection limit of 20-34 ppb were achieved after 60-148 s integration time. Flow test of the portable multispecies sensor is also demonstrated in this work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780281 | PMC |
http://dx.doi.org/10.3390/s22020556 | DOI Listing |
Talanta
January 2025
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:
An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Communication Engineering, SRM University, Guntur 522240, Andhra Pradesh, India.
We propose herein a metamaterial (MM) dual-band THz sensor for various biomedical sensing applications. An MM is a material engineered to have a particular property that is rarely observed in naturally occurring materials with an aperiodic subwavelength arrangement. MM properties across a wide range of frequencies, like high sensitivity and quality factors, remain challenging to obtain.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal.
In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.
View Article and Find Full Text PDFSensors (Basel)
December 2024
V.I. Il'ichev Pacific Oceanological Institute FEB RAS, 690041 Vladivostok, Russia.
The paper describes a planetary laser interferometric seismoacoustic observatory consisting of six stationary unequal arm laser strainmeters. Based on the triangulation method, the fundamentals of direction finding of various infrasound disturbances at any planetary distance have been developed. The authors show that in addition to determining locations of the occurrence of the recorded disturbance, using data from spatially separated laser strainmeters, it is possible to determine the nature of these signals' divergence and, also, the loss of their energy in the propagation medium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!