This work summarizes the electrochemical response of a salicylic acid-based carbon electrode for use as a novel solid-state reference electrode in a redox-based pH sensor. This novel reference produces a pH insensitive response over a range of pH 3-10 in solutions with low buffer concentrations, different compositions, conductivities, and ionic strengths is produced. The pH of the local environment is shown to be determined by the chemistry and the electrochemical response of the redox active species on the surface of the electrode; the local pH can be controlled by the electropolymerized salicylic acid moieties due to the acid concentration on the surface, avoiding any perturbation in environmental pH and leading to a stable novel reference system. Sensitivities of -7.1 mV/pH unit, -2.4 mV/pH unit, -0.2 mV/pH unit, and 2.5 mV/pH units were obtained for different food medias, hydroponic solution, seawater, and cell-culture media, respectively, confirming its ability to control the local pH of the electrode. This reference system is paired with a new pH sensing element based on electropolymerized flavanone to provide a calibration free, pH sensitive sensor to effectively and accurately measure the pH of various media with high viscosity, low conductivity, low/high buffer concentration or cell-culture environment, presenting a maximum error of +/-0.03 pH units.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777722 | PMC |
http://dx.doi.org/10.3390/s22020555 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!