Group-based sparse representation (GSR) uses image nonlocal self-similarity (NSS) prior to grouping similar image patches, and then performs sparse representation. However, the traditional GSR model restores the image by training degraded images, which leads to the inevitable over-fitting of the data in the training model, resulting in poor image restoration results. In this paper, we propose a new hybrid sparse representation model (HSR) for image restoration. The proposed HSR model is improved in two aspects. On the one hand, the proposed HSR model exploits the NSS priors of both degraded images and external image datasets, making the model complementary in feature space and the plane. On the other hand, we introduce a joint sparse representation model to make better use of local sparsity and NSS characteristics of the images. This joint model integrates the patch-based sparse representation (PSR) model and GSR model, while retaining the advantages of the GSR model and the PSR model, so that the sparse representation model is unified. Extensive experimental results show that the proposed hybrid model outperforms several existing image recovery algorithms in both objective and subjective evaluations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778763 | PMC |
http://dx.doi.org/10.3390/s22020537 | DOI Listing |
Cell Syst
December 2024
Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK. Electronic address:
Computational prediction of the interaction of T cell receptors (TCRs) and their ligands is a grand challenge in immunology. Despite advances in high-throughput assays, specificity-labeled TCR data remain sparse. In other domains, the pre-training of language models on unlabeled data has been successfully used to address data bottlenecks.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically.
View Article and Find Full Text PDFSparse coding enables cortical populations to represent sensory inputs efficiently, yet its temporal dynamics remain poorly understood. Consistent with theoretical predictions, we show that stimulus onset triggers broad cortical activation, initially reducing sparseness and increasing mutual information. Subsequently, competitive interactions sustain mutual information as activity declines and sparseness increases.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Shanghai Maritime University, Shanghai 201306, China. Electronic address:
Background And Objective: Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer Sciences, Anhui University, Hefei, 230039, China.
Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!