Event Visualization and Trajectory Tracking of the Load Carried by Rotary Crane.

Sensors (Basel)

Department of Mechanics and Machine Design Fundamentals, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Częstochowa, Poland.

Published: January 2022

Tracking the trajectory of the load carried by the rotary crane is an important problem that allows reducing the possibility of its damage by hitting an obstacle in its working area. On the basis of the trajectory, it is also possible to determine an appropriate control system that would allow for the safe transport of the load. This work concerns research on the load motion carried by a rotary crane. For this purpose, the laboratory crane model was designed in Solidworks software, and numerical simulations were made using the Motion module. The developed laboratory model is a scaled equivalent of the real Liebherr LTM 1020 object. The crane control included two movements: changing the inclination angle of the crane's boom and rotation of the jib with the platform. On the basis of the developed model, a test stand was built, which allowed for the verification of numerical results. Event visualization and trajectory tracking were made using a dynamic vision sensor (DVS) and the Tracker program. Based on the obtained experimental results, the developed numerical model was verified. The proposed trajectory tracking method can be used to develop a control system to prevent collisions during the crane's duty cycle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781732PMC
http://dx.doi.org/10.3390/s22020480DOI Listing

Publication Analysis

Top Keywords

trajectory tracking
12
carried rotary
12
rotary crane
12
event visualization
8
visualization trajectory
8
load carried
8
control system
8
trajectory
5
crane
5
tracking
4

Similar Publications

BMI trajectories are associated with NAFLD and advanced fibrosis via aging-inflammation mediation.

BMC Public Health

January 2025

Department of Hepatobiliary Surgery, Second Hospital Affiliated to Chongqing Medical University, Chongqing, P. R. China.

Background: As the global epidemic of obesity fuels metabolic conditions, the burden of nonalcoholic fatty liver disease (NAFLD) will become enormous. Abundant studies revealed the association between high body mass index (BMI) and NAFLD but overlooked the BMI patterns across life stages. We aimed to explore how BMI trajectories over age relate to NAFLD.

View Article and Find Full Text PDF

MEVDT: Multi-modal event-based vehicle detection and tracking dataset.

Data Brief

February 2025

Department of Electrical and Computer Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, 48128 MI, USA.

In this data article, we introduce the Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT) dataset. This dataset provides a synchronized stream of event data and grayscale images of traffic scenes, captured using the Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera. MEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M events, 10k object labels, and 85 unique object tracking trajectories.

View Article and Find Full Text PDF

Background: Compared to older adults with breast cancer (BC), adolescents and young adults (AYAs) develop more aggressive disease necessitating more intensive therapy with curative intent, which is disruptive to planned life trajectories. The burden of unmet needs among AYA BC survivors exists in two domains: (1) symptoms (e.g.

View Article and Find Full Text PDF

Recent Advancements in Localization Technologies for Wireless Capsule Endoscopy: A Technical Review.

Sensors (Basel)

January 2025

Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC 3800, Australia.

Conventional endoscopy is limited in its ability to examine the small bowel and perform long-term monitoring due to the risk of infection and tissue perforation. Wireless Capsule Endoscopy (WCE) is a painless and non-invasive method of examining the body's internal organs using a small camera that is swallowed like a pill. The existing active locomotion technologies do not have a practical localization system to control the capsule's movement within the body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!