In this paper, an encryption and trust evaluation model is proposed on the basis of a blockchain in which the identities of the Aggregator Nodes (ANs) and Sensor Nodes (SNs) are stored. The authentication of ANs and SNs is performed in public and private blockchains, respectively. However, inauthentic nodes utilize the network's resources and perform malicious activities. Moreover, the SNs have limited energy, transmission range and computational capabilities, and are attacked by malicious nodes. Afterwards, the malicious nodes transmit wrong information of the route and increase the number of retransmissions due to which the SNs' energy is rapidly consumed. The lifespan of the wireless sensor network is reduced due to the rapid energy dissipation of the SNs. Furthermore, the throughput increases and packet loss increase with the presence of malicious nodes in the network. The trust values of SNs are computed to eradicate the malicious nodes from the network. Secure routing in the network is performed considering residual energy and trust values of the SNs. Moreover, the Rivest-Shamir-Adleman (RSA), a cryptosystem that provides asymmetric keys, is used for securing data transmission. The simulation results show the effectiveness of the proposed model in terms of high packet delivery ratio.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781821 | PMC |
http://dx.doi.org/10.3390/s22020411 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!