During the COVID-19 pandemic, artificial intelligence has played an essential role in healthcare analytics. Scoping reviews have been shown to be instrumental for analyzing recent trends in specific research areas. This paper aimed at applying the scoping review methodology to analyze the papers that used artificial intelligence (AI) models to forecast COVID-19 outcomes. From the initial 1,057 articles on COVID-19, 19 articles satisfied inclusion/exclusion criteria. We found that the tree-based models were the most frequently used for extracting information from COVID-19 datasets. 25% of the papers used time series to transform and analyze their data. The largest number of articles were from the United States and China. The reviewed artificial intelligence methods were able to predict cases, death, mortality, and severity. AI tools can serve as powerful means for building predictive analytics during pandemics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI210923 | DOI Listing |
In the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFAesthet Surg J
January 2025
Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, Altınbas University, Istanbul, Turkey.
Background: Artificial intelligence (AI)-driven technologies offer transformative potential in plastic surgery, spanning pre-operative planning, surgical procedures, and post-operative care, with the promise of improved patient outcomes.
Objectives: To compare the web-based ChatGPT-4o (omni; OpenAI, San Francisco, CA) and Gemini Advanced (Alphabet Inc., Mountain View, CA), focusing on their data upload feature and examining outcomes before and after exposure to CME articles, particularly regarding their efficacy relative to human participants.
Nurs Leadersh (Tor Ont)
June 2025
Clinical Practice Leader Corporate Interprofessional Practice Lakeridge Health Durham Region, ON.
The integration of artificial intelligence (AI) into healthcare represents a paradigm shift with the potential to enhance patient care and streamline clinical operations. This commentary explores the Canadian perspective on key organizational considerations for nurse executives, emphasizing the critical role they play in fostering the establishment of AI governance structures and advancing the front-line adoption of AI in nursing practice. The discussion delves into five domains of consideration, analyzing recent developments and implications for nursing executives.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Gastroenterology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
Artificial intelligence (AI), with advantages such as automatic feature extraction and high data processing capacity and being unaffected by fatigue, can accurately analyze images obtained from colonoscopy, assess the quality of bowel preparation, and reduce the subjectivity of the operating physician, which may help to achieve standardization and normalization of colonoscopy. In this study, we aimed to explore the value of using an AI-driven intestinal image recognition model to evaluate intestinal preparation before colonoscopy. In this retrospective analysis, we analyzed the clinical data of 98 patients who underwent colonoscopy in Nantong First People's Hospital from May 2023 to October 2023.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia.
Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.
Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!