National parks often serve as a cornerstone for a country's species and ecosystem conservation efforts. However, despite the protection these sites afford, climate change is expected to drive a substantial change in their bird assemblages. We used species distribution models to predict the change in environmental suitability (i.e., how well environmental conditions explain the presence of a species) of 49 Canadian national parks during summer and winter for 434 bird species under a 2°C warming scenario, anticipated to occur in Canada around the mid-21st century. We compared these to existing species distributions in the 2010s, and classified suitability projections for each species at each park as potential extirpation, worsening, stable, improving, or potential colonisation. Across all parks, and both seasons, 70% of the projections indicate change, including a 25% turnover in summer assemblages and 30% turnover in winter assemblages. The majority of parks are projected to have increases in species richness and functional traits in winter, compared to a mix of increases and decreases in both in summer. However, some changes are expected to vary by region, such as Arctic region parks being likely to experience the most potential colonisation, while some of the Mixedwood Plains and Atlantic Maritime region parks may experience the greatest turnover and potential extirpation in summer if management actions are not taken to mitigate some of these losses. Although uncertainty exists around the precise rate and impacts of climate change, our results indicate that conservation practices that assume stationarity of environmental conditions will become untenable. We propose general guidance to help managers adapt their conservation actions to consider the potentially substantive changes in bird assemblages that are projected, including managing for persistence and change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782523 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262116 | PLOS |
Ecol Evol
January 2025
Department of Environmental Systems Science ETH Zürich Switzerland.
Scavenging is a widespread feeding strategy involving a diversity of taxa from different trophic levels, from apex predators to obligate scavengers. Scavenger species play a crucial role in ecosystem functioning by removing carcasses, recycling nutrients and preventing disease spread. Understanding the trophic roles of scavenger species can help identify specialized species with unique roles and species that may be more vulnerable to ecological changes.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Anatomy, University of Otago, Dunedin, New Zealand.
In a changing environment, vacant niches can be filled either by adaptation of local taxa or range-expanding invading species. The relative tempo of these patterns is of key interest in the modern age of climate change. Aotearoa New Zealand has been a hotspot of biogeographic research for decades due to its long-term isolation and dramatic geological history.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague, Czech Republic.
Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However, the seasonal dynamics of their bird communities have been scarcely explored at large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the Neotropical Region.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFOecologia
December 2024
Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-970, Brazil.
Among the many changes associated with the urbanization process, changes in resource availability can directly impact local wildlife populations. Urban areas suppress native vegetation and convert natural environments into impervious surfaces, modifying the composition and quantity of available food resources. Understanding the food requirements of species is crucial, mainly because it is one of the main elements that characterize their ecological niche and structure local communities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!