Here, we report light emission from single atoms bridging a graphene nanogap that emit bright visible light based on fluorescence of ionized atoms. Oxygen atoms in the gap shows a peak emission wavelength of 569 nm with a full width at half maximum (FWHM) of 208 nm. The energy states produced by these ionized oxygen atoms bridging carbon atoms in the gap also produce a large negative differential resistance (NDR) in the transport across the gap with the highest peak-to-valley current ratio (PVR = 45) and highest peak current density (~90 kA/cm) ever reported in a solid-state tunneling device. While tunneling transport has been previously observed in graphene nanogaps, the bridging of ionized oxygen observed here shows a low excess current, leading to the observed PVR. On the basis of the highly reproducible light emission and NDR from these structures, we demonstrate a 65,536-pixel light-emitting nanogap array.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782453PMC
http://dx.doi.org/10.1126/sciadv.abj1742DOI Listing

Publication Analysis

Top Keywords

graphene nanogap
8
light emission
8
atoms bridging
8
oxygen atoms
8
atoms gap
8
ionized oxygen
8
atoms
5
electroluminescence atoms
4
atoms graphene
4
nanogap report
4

Similar Publications

Exceptional Field Effect and Negative Differential Conductance in Spiro-Conjugated Single-Molecule Junctions.

J Am Chem Soc

October 2024

Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China.

The advancement of molecular electronics endeavors to build miniaturized electronic devices using molecules as the key building blocks by harnessing their internal structures and electronic orbitals. To date, linear planar conjugated or cross-conjugated molecules have been extensively employed in the fabrication of single-molecule devices, benefiting from their good conductivity and compatibility with electrode architectures. However, the development of multifunctional single-molecule devices, particularly those with unique charge transport properties, necessitates a more rigorous selection of molecular materials.

View Article and Find Full Text PDF

Solid-state nanogap-based DNA sequencing with a quantum tunneling approach has emerged as a promising avenue due to its potential to deliver swift and precise sequencing outcomes. Nevertheless, despite significant progress, experimentally achieving single base resolution with a high signal-to-noise ratio remains a daunting challenge. In this work, we have utilized a machine learning (ML) framework coupled with the quantum transport method to assess and compare the nucleotide identification performance of graphene nanogaps functionalized with four different edge-saturating entities (C, H, N, and OH).

View Article and Find Full Text PDF

Gap surface plasmon (GSP) modes enhance graphene photodetectors (GPDs)' performance by confining the incident light within nanogaps, giving rise to strong light absorption. Here, we propose an asymmetric plasmonic nanostructure array on planar graphene comprising stripe- and triangle-shaped sharp tip arrays. Upon light excitation, the noncentrosymmetric metallic nanostructures show strong light-matter interactions with localized field close to the surface of tips, causing an asymmetric electric field.

View Article and Find Full Text PDF

The delicate synthesis of one-dimensional (1D) carbon nanostructures from two-dimensional (2D) graphene moiré layers holds tremendous interest in materials science owing to its unique physiochemical properties exhibited during the formation of hybrid configurations with sp-sp hybridization. However, the controlled synthesis of such hybrid sp-sp configurations remains highly challenging. Therefore, we employed a simple hydrothermal technique using agro-industrial waste as the carbon source to synthesize 1D carbyne nanocrystals from the nanoconstricted zones of 2D graphene moiré layers.

View Article and Find Full Text PDF

Regulation of quantum spin conversions in a single molecular radical.

Nat Nanotechnol

July 2024

Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Centre, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.

Free radicals, generally formed through the cleavage of covalent electron-pair bonds, play an important role in diverse fields ranging from synthetic chemistry to spintronics and nonlinear optics. However, the characterization and regulation of the radical state at a single-molecule level face formidable challenges. Here we present the detection and sophisticated tuning of the open-shell character of individual diradicals with a donor-acceptor structure via a sensitive single-molecule electrical approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!