Topological metamaterials have robust properties engineered from their macroscopic arrangement, rather than their microscopic constituency. They can be designed by starting from Dirac metamaterials with either symmetry-enforced or accidental degeneracy. The latter case provides greater flexibility in the design of topological switches, waveguides, and cloaking devices, because a large number of tuning parameters can be used to break the degeneracy and induce a topological phase. However, the design of a topological logic element-a switch that can be controlled by the output of a separate switch-remains elusive. Here we numerically demonstrate a topological logic gate for ultrasound by exploiting the large phase space of accidental degeneracies in a honeycomb lattice. We find that a degeneracy can be broken by six physical parameters, and we show how to tune these parameters to create a phononic switch that transitions between a topological waveguide and a trivial insulator by ultrasonic heating. Our design scheme is directly applicable to photonic crystals and may guide the design of future electronic topological transistors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.015501 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
The quest for anisotropic superconductors has been a long-standing pursuit due to their potential applications in quantum computing. In this regard, experimentally, d-wave and anisotropic s-wave superconducting order parameters are predominantly observed, while p-wave superconductors remain largely elusive. Achieving p-wave superconductivity in topological phases is highly desirable, as it is considered suitable for creating topologically protected qubits.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
UESTC: University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Jianshe Road, Chengdu, CHINA.
Catenated networks exclusively composed of intertwining rings were first envisioned as "Olympic gels" by Pierre-Gilles de Gennes four decades ago but have not been successfully prepared in artificial materials yet due to the challenge in synthesis. Herein, we present a bio-inspired, evaporation-assisted strategy to address this issue. In our design, the evaporation of liquid catalysts that induce ring-chain equilibrium of polymer systems drives macrocycles to encounter and assists their catenation through reversible cyclization.
View Article and Find Full Text PDFFront Pharmacol
January 2025
MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.
Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
To achieve logic operations via Majorana braiding, positional control of the Majorana bound states (MBSs) must be established. Here we report the observation of a striped surface charge order coexisting with superconductivity and its interaction with the MBS in the topological superconductor 2M-WS, using low-temperature scanning tunneling microscopy. By applying an out-of-plane magnetic field, we observe that MBSs are absent in vortices in the region with stripe order.
View Article and Find Full Text PDFGenome Med
January 2025
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
Background: Large-scale pharmacogenomic resources, such as the Connectivity Map (CMap), have greatly assisted computational drug discovery. However, despite their widespread use, CMap-based methods have thus far been agnostic to the biological activity of drugs as well as to the genomic effects of drugs in multiple disease contexts. Here, we present a network-based statistical approach, Pathopticon, that uses CMap to build cell type-specific gene-drug perturbation networks and integrates these networks with cheminformatic data and diverse disease phenotypes to prioritize drugs in a cell type-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!