Two-dimensional materials and their van der Waals heterostructures enable a large range of applications, including label-free biosensing. Lattice mismatch and work function difference in the heterostructure material result in strain and charge transfer, often varying at a nanometer scale, that influence device performance. In this work, a multidimensional optical imaging technique is developed in order to map subdiffractional distributions for doping and strain and understand the role of those for modulation of the electronic properties of the material. As an example, vertical heterostructures comprised of monolayer graphene and single-layer flakes of transition metal dichalcogenide MoS were fabricated and used for biosensing. Herein, the optical label-free detection of doxorubicin, a common cancer drug, is reported three independent optical detection channels (photoluminescence shift, Raman shift, and graphene enhanced Raman scattering). Non-uniform broadening of components of multimodal signal correlates with the statistical distribution of local optical properties of the heterostructure. Multidimensional nanoscale imaging allows one to reveal the physical origin for such a local response and propose the best strategy for the mitigation of materials variability and future device fabrication, enabling multiplexed biosensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c09335 | DOI Listing |
Biosens Bioelectron
March 2025
Department of Chemistry "Ugo Schiff', University of Florence, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy. Electronic address:
Bio-Layer Interferometry (BLI) has emerged as a versatile technique in affinity-based biosensing, analogous to Surface Plasmon Resonance. BLI enables real-time, label-free detection, and quantification of biomolecular interactions between an immobilized receptor and an analyte in solution. The BLI sensor comprises an optical fiber with an internal reference layer at the end and an external biocompatible layer where biological receptors are immobilized and exposed to the solution.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Lead ion (Pb) is a common environmental contaminant, extremely toxic, persistent, and easily adsorbed, concentrated, and enriched by agricultural products. Ingestion of this ion can result in health problems for humans, including neurological disorders, heart disease, brain damage, and mental deficiency. In this research, a sensitive fluorescent biosensing method for detecting Pb was developed using DNAzyme as the target recognition element and SYBR Green (SG) fluorescent dye as the signal indicator.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Türkiye.
Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia.
A novel approach to developing lateral flow assays (LFAs) for the detection of CYFRA 21-1 (cytokeratin 19 fragment, a molecular biomarker for epithelial-origin cancers) is proposed. Magnetic bioconjugates (MBCs) were employed in combination with advanced optical and magnetic tools to optimize assay conditions. The approach integrates such techniques as label-free spectral-phase interferometry, colorimetric detection, and ultrasensitive magnetometry using the magnetic particle quantification (MPQ) technique.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Integrated Circuits, Shandong University, Jinan 250100, China.
Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant potential for biomolecular detection and quantitative analysis in biological samples. Although broadband fingerprint enhancement compensates for limitations in detection capability and sensitivity, the complex optical path design in operation restricts its broader adoption. This paper proposes a multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance the broadband THz fingerprint detection of trace analytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!