The unprecedented increase in atmospheric CO concentration calls for effective carbon capture technologies. With distributed sources contributing to about half of the overall emission, CO capture from the atmosphere [direct air capture, (DAC)] is more relevant than ever. Herein, an electrochemically mediated DAC system is reported which utilizes affinity of redox-active quinone moieties towards CO molecules, and unlike incumbent chemisorption technologies which require temperature or pH swing, relies solely on the electrochemical voltage for CO capture and release. The design and operation of a DAC system is demonstrated with stackable bipolar cells using quinone chemistry. Specifically, poly(vinylanthraquinone) (PVAQ) negative electrode undergoes a two-electron reduction reaction and reversibly complexes with CO , leading to CO sequestration from the feed stream. The subsequent PVAQ oxidation, conversely, results in release of CO . The performance of both small- and meso-scale cells for DAC are evaluated with feed CO concentrations as low as 400 ppm (0.04 %), and energy consumption is demonstrated as low as 113 kJ per mole of CO captured. Notably, the bipolar cell construct is modular and expandable, equally suitable for small and large plants. Moving forward, this work presents a viable and highly customizable electrochemical method for DAC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303529PMC
http://dx.doi.org/10.1002/cssc.202102533DOI Listing

Publication Analysis

Top Keywords

electrochemically mediated
8
stackable bipolar
8
bipolar cell
8
dac system
8
capture
5
mediated direct
4
direct capture
4
capture stackable
4
cell unprecedented
4
unprecedented increase
4

Similar Publications

Low background catalytic redox recycling coupled with hybridization chain reaction amplification for highly sensitive electrochemical aptamer luteinizing hormone assay.

Bioelectrochemistry

December 2024

Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.

The concentration variation of luteinizing hormone (LH) regulates the cell cycle of oocyte meiosis and significantly affect the whole reproductive cycle. Sensitively quantifying the LH biomarker therefore plays an important role for reproductive disease diagnosis. By coupling a new low background catalytic redox recycling strategy with hybridization chain reaction (HCR), we propose a highly sensitive bio-electrochemical aptamer LH sensing method.

View Article and Find Full Text PDF

Aminated carbon nanotubes, CNT, were covalently modified with glutardialdehyde (GDI) and the redox dye Azure to form a new electrode material CNT-GDI-Azure (CGA). The nanocomposite of CGA and polysaccharide chitosan was used for the anodic determination of NADH. Compared to conventional carbon and metal electrodes, the CGA electrode drastically lowered the overpotential for NADH oxidation (by > 0.

View Article and Find Full Text PDF

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.

View Article and Find Full Text PDF

The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.

View Article and Find Full Text PDF

Epidemic infections and spreading antibiotic resistance require diagnostic tests that can be rapidly adopted. To reduce the usually time-consuming adaptation of molecular diagnostic tests to changing targets, we propose the novel approach of a repurposable sensing electrode functionalization with a universal, target-independent oligonucleotide probe. In the liquid phase covering the electrode, the target sequence is amplified by MD LAMP (mediator-displacement loop-mediated isothermal amplification) releasing a generic methylene blue-labeled mediator, which specifically hybridizes to the solid-phase probe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!