Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70-30% and 80-20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-18554-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!