G-protein-coupled receptor 40 (GPR40) is a promising target to support glucose-induced insulin release in patients with type 2 diabetes. We studied the role of GPR40 in the regulation of blood-nerve barrier integrity and its involvement in diabetes-induced neuropathies. Because GPR40 modulates insulin release, we used the streptozotocin model for type 1 diabetes, in which GPR40 functions can be investigated independently of its effects on insulin release. Diabetic wild-type mice exhibited increased vascular endothelial permeability and showed epineural microlesions in sciatic nerves, which were also observed in naïve GPR40-/- mice. Fittingly, expression of vascular endothelial growth factor-A (VEGF-A), an inducer of vascular permeability, was increased in diabetic wild-type and naïve GPR40-/- mice. GPR40 antagonists increased VEGF-A expression in murine and human endothelial cells as well as permeability of transendothelial barriers. In contrast, GPR40 agonists suppressed VEGF-A release and mRNA expression. The VEGF receptor inhibitor axitinib prevented diabetes-induced hypersensitivities and reduced endothelial and epineural permeability. Importantly, the GPR40 agonist GW9508 reverted established diabetes-induced hypersensitivity, an effect that was blocked by VEGF-A administration. Thus, GPR40 activation suppresses VEGF-A expression, thereby reducing diabetes-induced blood-nerve barrier permeability and reverting diabetes-induced hypersensitivities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db21-0711 | DOI Listing |
Narra J
December 2024
Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Chronic limb-threatening ischemia (CLTI) is the most severe manifestation of peripheral arterial disease (PAD) and imposes a significantly high burden due to its high risk of mortality and amputation. Revascularization is the first-line treatment for CLTI; however, the amputation rate remains high, and approximately one-third of patients are not eligible for this treatment. Therefore, there is an urgent need for more effective therapeutic strategies.
View Article and Find Full Text PDFNarra J
December 2024
Department of Radiology, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia.
Several previous studies have demonstrated the benefits of early macrophage 2 activation fat grafts supplemented with macrophage culture. However, this approach is considered impractical in clinical settings because of intraperitoneal induction use. The aim of this study was to investigate the effect of early stromal vascular fraction (SVF) macrophage-2 activation with IL-4 on fat graft survival compared to SVF alone using an animal model for better fat graft viability.
View Article and Find Full Text PDFNarra J
December 2024
Faculty of Medicine, Universitas HKBP Nommensen, Medan, Indonesia.
Ischemic stroke is a sudden onset of neurological deficit resulting from a blockage in cerebral blood vessels, which can lead to brain tissue damage, chronic disability, and increased risk of mortality. Secretome from hypoxic mesenchymal stem cells (SH-MSC) is a potential therapy to improve neurological deficit by increasing the expression of vascular endothelial growth factor (VEGF) and reducing glial fibrillary acidic protein (GFAP). These effects can reduce the infarction area of ischemic stroke.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Osteoarthritis (OA), affecting > 500 million people worldwide, profoundly affects the quality of life and ability to work. The mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in OA. To address the lack of studies focused on synovial cells in OA, we evaluated the expression patterns and roles of the MAPK signaling pathway components in OA synovial tissues using bioinformatics.
View Article and Find Full Text PDFAnat Sci Int
January 2025
Department of Anatomy, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
Tenomodulin (TNMD) is related to chondromodulin-1, a cartilage-derived growth regulator. It is specifically expressed in hypovascular connective tissues, including tendons and ligaments. Vascular endothelial growth factor A (VEGF-A) and calcitonin gene-related peptide (CGRP) correlate with angiogenesis and neurogenesis, respectively, during development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!