Single-Crystal LiNi Mn Co O Cathodes for Extreme Fast Charging.

Small

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Published: March 2022

Ni-rich layered LiNi Mn Co O (NMCs, x ≥ 0.8) are poised to be the dominating cathode materials for lithium-ion batteries for the foreseeable future. Conventional polycrystalline NMCs, however, suffer from severe cracking along the grain boundaries of primary particles and capacity loss under high charge and/or discharge rates, hindering their implementation in fast-charging electric vehicular (EV) batteries. Single-crystal (SC) NMCs are attractive alternatives as they eliminate intergranular cracking and allow for grain-level surface optimization for fast Li transport. In the present study, the authors report synthetic approaches to produce SC LiNi Co Mn O (NMC811) samples with different morphologies: Oct-SC811 with predominating (012)-family surface and Poly-SC811 with predominating (104)-family surface. Poly-SC811, representing the first experimentally synthesized NMC811 single crystals with (104) surface, delivers superior performance even at the ultra-high rate of 6 C. Through detailed X-ray analysis and electron microscopy characterization, it is shown that the enhanced performance originates from better chemical and structural stabilities, faster Li diffusion kinetics, suppressed side reactions with electrolyte, and excellent cracking resistance. These insights provide important design guidelines in the future development of fast-charging NMC-type cathode materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202105833DOI Listing

Publication Analysis

Top Keywords

cathode materials
8
surface poly-sc811
8
single-crystal lini
4
lini cathodes
4
cathodes extreme
4
extreme fast
4
fast charging
4
charging ni-rich
4
ni-rich layered
4
layered lini
4

Similar Publications

Nicotinamide adenine dinucleotide is a crucial coenzyme in cellular metabolism and is implicated in various diseases. This work introduces an electrochemical bioanalytical method utilizing solution-phase formate dehydrogenase (CbFDH) for detecting its oxidized form (NAD) in human blood plasma samples. The detection mechanism involves the catalytic conversion of NAD to NADH, facilitated by CbFDH in the presence of formate.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Worth your sweat: wearable microfluidic flow rate sensors for meaningful sweat analytics.

Lab Chip

January 2025

Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Electric-field-induced shape memory effect has potential applications in electromechanical actuator. Here, this study proposes the a phase structure design routine in (1-x)(75NaBiTiO-25SrTiO)-xPbTiO ceramics to obtain large electromechanical response and shape memory effect. It is found that the shape memory effect is closely related to the bending deformation induced by asymmetric polarization between positive and negative electrodes, which is resulted from the reductions of Bi and Pb because of electron injection from negative electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!