Anthropogenic activities can be the source of saline solid wastes that need to be treated to reduce their salt load to meet the purposes of reuse, valorization or storage. In this context, chloride remediation can be achieved using high-salt accumulating plants. However, there is very limited information on the comparative potential of different species in the same environment, and only scarce data concerning their efficiency as a function of growth stage. In order to rationalize these selection criteria, three macrophytes i.e., common reed (Phragmites australis), sea rush (Juncus maritimus), and cattail (Typha latifolia), were cultivated at two growth stages (6-months old and 1-year old) for 65 days in Cl spiked substrates (from 0 up to 24 ‰ NaCl). The plants' survival and potential capacity for removal of Cl from substrates and accumulation in shoots were investigated. For the three studied species, mature and juvenile plants display a high tolerance to salinity. However, mature specimens with higher shoot biomass and Cl contents are capable of greater chloride removal than juvenile plants. The sole exception is P. australis which displays just the same phytoremediation potential for both mature and juvenile specimens. Moreover, P. australis has the lowest potential when compared with other species, being 1.5 and 3 times lower than for J. maritimus and T. latifolia. When considering the plant growth and the shoot biomass production, chloride removal rates from the substrate point that mature J. maritimus should preferentially be used to design an operational chloride remediation system. The results highlight the relevance of considering the growth stage of plants used for Cl removal. HIGHLIGHTS: 1) Mature and juvenile specimens of J. maritimus, P. australis, and T. latifolia have high salinity tolerance in solid media spiked up to 24 ‰ NaCl. 2) Mature plants have generally better Cl removal and phytoremediation performances than juvenile specimens. 3) J. maritimus is the most effective species for chloride phytoremediation with high survival and high Cl sequestration in shoots. 4) T. latifolia has high Cl removal in shoots and good remediation capacities but also shows sign of stress. 5) P. australis shows low Cl sequestration and is a poor candidate for chloride remediation from substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9076746PMC
http://dx.doi.org/10.1007/s11356-021-17591-3DOI Listing

Publication Analysis

Top Keywords

chloride remediation
12
mature juvenile
12
juvenile specimens
12
three macrophytes
8
phragmites australis
8
juncus maritimus
8
typha latifolia
8
growth stages
8
growth stage
8
juvenile plants
8

Similar Publications

The recovery of palladium from aqueous solutions is important due to its critical role in various industrial applications and the growing demand for sustainable resource management. This study investigates the potential of hybrid materials composed of MgAl layered double hydroxides (LDHs), chitosan, and ionic liquids (methyl trialchil ammonium chloride) for the efficient adsorption of palladium ions from low-concentration aqueous solutions. Comprehensive characterization techniques, including X-ray diffraction (RX), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TG), were employed to elucidate the structural and compositional properties of the hybrid materials.

View Article and Find Full Text PDF

Molecular Simulation Study of All-Silica Zeolites for the Adsorptive Removal of Airborne Chloroethenes.

Langmuir

January 2025

Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany.

Chloroethenes (CHCl with = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far.

View Article and Find Full Text PDF

Microplastics and Dechlorane Plus co-exposure amplifies their impacts on soybean plant.

Environ Pollut

January 2025

Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China. Electronic address:

The co-existence of microplastics (MPs) and organic pollutants on agricultural ecosystems pose potential implications for both food safety and environmental integrity. The combined effects of MPs with Dechlorane Plus (DP), a newly listed banned flame retardant, remain unknown. This study explores the biological responses of soybean plants to exposure from polyethylene (PE) and polyvinyl chloride (PVC) MPs and DP.

View Article and Find Full Text PDF

Electrochemical destruction of PFAS at low oxidation potential enabled by CeO electrodes utilizing adsorption and activation strategies.

J Hazard Mater

December 2024

School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China. Electronic address:

The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.

View Article and Find Full Text PDF

Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process.

Sci Total Environ

December 2024

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!