In this study, an enhanced coagulation-flocculant process incorporating magnetic powder was used to further treat the secondary effluent of domestic wastewater from a municipal wastewater treatment plant. The purpose of this work was to improve the discharged water quality to the surface water class IV standard of China. A novel approach using a combination of the response surface methodology and an artificial neural network (RSM-ANN) was used to optimize and predict the total phosphorus (TP) pollutant removal and turbidity. This work was first evaluated by RSM using the concentrations of coagulant, magnetic powder, and flocculant as the controllable operating variables to determine the optimal TP removal and turbidity. Next, an ANN model with a back-propagation algorithm was constructed from the RSM data along with the non-controllable variables, raw TP concentration, and raw water turbidity. Under the optimized experimental conditions (28.42 mg/L coagulant, 623 mg/L magnetic powder, and 0.18 mg/L flocculant), the TP and turbidity removal reached 88.79 ± 5.45% and 63.48 ± 9.60%, respectively, compared with 83.28% and 59.80%, predicted by the single RSM model, and 87.71 ± 5.74% and 64.62 ± 10.75%, predicted by the RSM-ANN model. The treated water were 0.17 ± 6.69% mg/L of TP and 2.46 ± 5.09% NTU of turbidity, respectively, which completely met the surface water class IV standard (TP < 0.3 mg/L; turbidity < 3 NTU). Therefore, this work demonstrated that the discharged water quality was completely improved using the magnetic coagulation process. In addition, the combined RSM-ANN approach could have potential application in municipal wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-18060-7 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
Recent advancements in material science have aimed to create novel nanomaterials with unique properties and potential applications across diverse domains. By deciphering the complexities of the versatile nanomaterial, MgO, the study aims to deepen our comprehension of the synergistic effects induced by dual doping in MgO, thus propelling the advancement of innovative technologies and materials with broad applications. The present investigation employed a facile chemical precipitation and coprecipitation approach to synthesize pure MgO and Ni, Zn dual doped MgO, varying Ni concentration ranging between 2% and 10% and maintaining a constant Zn concentration at 20%.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.
Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Magnetic supported ionic liquids are a unique subclass of ionic liquids that possess the ability to respond to external magnetic fields, combining the advantageous properties of traditional ILs with this magnetic responsiveness. A novel magnetic ionic nanocatalyst of FeO@SiO@CPTMS-DTPA was prepared by anchoring an ionic liquid, CPTMS-DTPA, onto the surface of silica-modified FeO. The morphology, chemical structure and magnetic property of the magnetic ionic nanocatalyst structure was characterized using scanning electron microscopy, X-ray powder diffraction, Fourier transformation infrared spectroscopy, vibrating sample magnetometer, and thermogravimetric analysis.
View Article and Find Full Text PDFPhytochem Anal
December 2024
School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, Henan, China.
Introduction: The extraction of DNA is the basis of molecular biology research. The quality of the extracted DNA is one of the key factors for the success of molecular biology experiments.
Objective: To select a suitable DNA extraction method for Chinese medicinal herbs and seeds.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!