A method of assessing the depth of contaminated sediments that should be removed in lakes: a case study of Tangxun Lake, China.

Environ Geochem Health

State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.

Published: February 2023

The depth of contaminated sediments constrains the water environment of large shallow lakes and can affect shallow lake water quality through sediment resuspension and nutrient release. Although such effects can be avoided by sediment dredging methods, we still cannot precisely quantify the depth of sediment dredging. Therefore, we used organic index method, pollution index method and potential ecological risk evaluation to evaluate the contamination status of split samples of in situ sediments layer by layer, and established a comprehensive contamination index evaluation method for layer-by-layer sediments, then combined with the contamination release characteristics of split samples to assess the contamination degree of the sediments obtained. The results show that the content of nitrogen and phosphorus in the surface layer of Lake Townsend sediments is generally higher than that in the middle and bottom sediments, and the heavy metals also satisfy this pattern, which is consistent in the sediments of both east and west regions. We also simulated the release process of nitrogen and phosphorus nutrients in the in situ sediment of Tangxun Lake in 2019, and the experimental results showed that the risk of nitrogen and phosphorus nutrient release in the sediment was mainly concentrated in the surface and middle layers, and the risk of elemental nitrogen release was significantly greater than that of phosphorus release. Finally, a comprehensive evaluation was carried out to obtain the desilting depth of the sediments in Lake Townsend, and it can be determined that the recommended desilting depth is about 20 cm for West Lake and 30 cm for East Lake. The results show that the recommended dredging depth can be determined based on this method, which provides an important scientific basis for sediment dredging in Tangxun Lake and even provides a new paradigm for sediment dredging depth estimation in similar large shallow lakes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-021-01176-7DOI Listing

Publication Analysis

Top Keywords

sediment dredging
16
tangxun lake
12
nitrogen phosphorus
12
sediments
9
depth contaminated
8
contaminated sediments
8
lake
8
large shallow
8
shallow lakes
8
nutrient release
8

Similar Publications

Long term substantial impacts of historic Chlor-Alkali production as a newly recognized source of polyhalogenated carbazoles in aquatic environments.

J Environ Sci (China)

July 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Bottom sediments of the North American Great Lakes are characterized by a high loading (over 3,000 tonnes) of polyhalogenated carbazoles (PHCZs). The origin of this environmental contaminant loading is unclear. Here, we first examined PHCZs levels and profiles in sediment, lotus, and fish from the Ya-Er Lake (China) that has been under the influence of an obsolete chlor-alkali facility for forty years and discovered substantial PHCZs contamination.

View Article and Find Full Text PDF

Characterization of hydrodynamics around plates shaped like dragonfly wings as a sediment reduction measure in a sewer system.

Water Res

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, China.

Sediment control is a major concern in sewer management. Early studies focused on the parameters affecting the efficiency of existing dredging facilities, and novel long-term sediment reduction measures have not been developed. Superior sediment reduction performance has been demonstrated for plates folded at 25° placed in a pipe.

View Article and Find Full Text PDF

Alterations caused by human activities in the environment, such as dredging, modify the physicochemical conditions and affect the habitat. Maintenance dredging that allows large vessels access to inland ports is a recurring disruptive action. The study aimed to evaluate, during a maintenance dredging operation in a port area of the Paraná River, the modifications in the structure of the river, the presence of contaminants and bacterial organisms.

View Article and Find Full Text PDF

Dredging in estuarine systems significantly impacts phytoplankton communities, with suspended particulate matter (SPM) and dissolved aluminum (Al) serving as indicators of disturbance intensity. This study assessed the effects of dredging in the São Marcos Estuarine Complex (SMEC), Brazil, over three distinct events (2015, 2017, 2020), involving varying sediment volumes and climatic influences. Prolonged dredging operations and increased sediment volumes led to a pronounced 43.

View Article and Find Full Text PDF

Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!