Unique environments often serve as a source of novel microorganisms with novel chemistries. In this study, telluric samples collected from different regions of Algeria were processed for the isolation of novel peroxidase-producing actinobacterial strains. An agar-based screening identified 45 isolates with the ability to produce peroxidase. The 16S rRNA gene sequencing showed that most of the strains belong to the genus Streptomyces. Optimization of cultivation conditions was performed for the top five peroxidase-producing strains. Apart from strain 36 (optimal growth temperature of 30 °C) and strain 45 (optimal medium pH of 6.0), the strains exhibited optimal peroxidase production when cultivated for 5 days at 37 °C and in a medium at pH 7.0. Extracellular peroxidase production was induced by ferulic acid in three of the five strains, while the presence of canola lignocellulosic waste (CLW) induced peroxidase production in all strains. Strain 19 (S19) was selected for further optimization and the extracellular peroxidase purified using acid and acetone precipitation, followed by size exclusion chromatography. The purified fraction showed a single band on the polyacrylamide gel with an estimated molecular weight of 21.45 kDa. Genome analysis confirmed the assignment of S19 to the genus Streptomyces, the presence of genes encoding for peroxidases, and the presence of genes encoding for carbohydrate-active enzymes. The presence of biosynthetic gene clusters potentially encoding for biosurfactants further highlighted the great biotechnological potential of the strain.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-022-00236-xDOI Listing

Publication Analysis

Top Keywords

peroxidase production
12
genus streptomyces
8
strain optimal
8
extracellular peroxidase
8
presence genes
8
genes encoding
8
strains
6
peroxidase
5
peroxidase-producing
4
peroxidase-producing actinobacteria
4

Similar Publications

Comparison of the aquatic toxicity of diquat and its metabolites to zebrafish Danio rerio.

Sci Rep

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.

Diquat (DQ) is a non-selective, fast-acting herbicide that is extensively used in aquatic systems. DQ has been registered as the substitute for paraquat due to its lower toxicity. However, the widespread presence of DQ in aquatic systems can pose an ecological burden on aquatic organisms.

View Article and Find Full Text PDF

Inhibiting CFTR through inh-172 in primary neutrophils reveals CFTR-specific functional defects.

Sci Rep

December 2024

Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.

The lungs of people with cystic fibrosis (PwCF) are characterized by recurrent bacterial infections and inflammation. Infections in cystic fibrosis (CF) are left unresolved despite excessive neutrophil infiltration. The role of CFTR in neutrophils is not fully understood.

View Article and Find Full Text PDF

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

December 2024

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Co-metabolism of Norfloxacin by Chlorella pyrenoidosa: Carbon source effects, biotransformation mechanisms, and key driving genes.

J Hazard Mater

December 2024

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.

View Article and Find Full Text PDF

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!