AI Article Synopsis

Article Abstract

Lubricants are widely used in macroscopic mechanical systems to reduce friction and wear. However, on the microscopic scale, it is not clear to what extent lubricants are beneficial. Therefore, in this study, we consider two diamond solid-state gears at the nanoscale immersed in different lubricant molecules and perform classical MD simulations to investigate the rotational transmission of motion. We find that lubricants can help to synchronize the rotational transmission between gears regardless of the molecular species and the center-of-mass distance. Moreover, the influence of the angular velocity of the driving gear is investigated and shown to be related to the bond formation process between gears.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744455PMC
http://dx.doi.org/10.3762/bjnano.13.3DOI Listing

Publication Analysis

Top Keywords

rotational transmission
12
solid-state gears
8
lubricants
4
lubricants rotational
4
transmission solid-state
4
gears
4
gears lubricants
4
lubricants macroscopic
4
macroscopic mechanical
4
mechanical systems
4

Similar Publications

To alleviate water resource shortages and tensions and meet the water diversion needs of different river basins, buried (cross-dam) pipelines have become an essential component of water diversion projects. They are installed in levee projects in key river basins such as the Yellow River, Jingjiang River, and Beijiang River. Due to the complex engineering structure and multiple sources of vibration excitation, if vibrations propagate along the pipeline axis towards the surrounding levee, they could have an adverse impact on the stability and safe operation of the levee.

View Article and Find Full Text PDF

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

A metamaterial absorber capable of swiftly altering its electromagnetic response in the microwave range offers adaptability to changing environments, such as tunable stealth capabilities. Inspired by the chameleon's ability to change color through the structural transformation of photonic lattice crystals, which shift the bandgaps of reflection and transmission of visible light, we designed a crisscross structure that transforms from an expanded to a collapsed form. This transformation enables a switch between broadband absorption and peak transmission in the microwave range (4 to 18 gigahertz).

View Article and Find Full Text PDF

Acrobatics at the insect scale: A durable, precise, and agile micro-aerial robot.

Sci Robot

January 2025

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Aerial insects are exceptionally agile and precise owing to their small size and fast neuromotor control. They perform impressive acrobatic maneuvers when evading predators, recovering from wind gust, or landing on moving objects. Flapping-wing propulsion is advantageous for flight agility because it can generate large changes in instantaneous forces and torques.

View Article and Find Full Text PDF

We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!