Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic small-angle neutron scattering is employed to investigate the magnetic interactions in (FeNi)B alloy, a HiB-NANOPERM-type soft magnetic nanocrystalline material, which exhibits an ultrafine microstructure with an average grain size below 10 nm. The neutron data reveal a significant spin-misalignment scattering which is mainly related to the jump of the longitudinal magnetization at internal particle-matrix interfaces. The field dependence of the neutron data can be well described by micromagnetic small-angle neutron scattering theory. In particular, the theory explains the 'clover-leaf-type' angular anisotropy observed in the purely magnetic neutron scattering cross section. The presented neutron data analysis also provides access to the magnetic interaction parameters, such as the exchange-stiffness constant, which plays a crucial role towards the optimization of the magnetic softness of Fe-based nanocrystalline materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8733879 | PMC |
http://dx.doi.org/10.1107/S2052252521010605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!