Learning or performing new behaviors requires significant neuronal signaling and is metabolically demanding. The metabolic cost of performing a behavior is mitigated by exposure and practice which result in diminished signaling and metabolic requirements. We examined the impact of novel and habituated wheel running, as well as effortful behaviors on the modulation of extracellular glucose and lactate using biosensors inserted in the primary motor cortex of mice. We found that motor behaviors produce increases in extracellular lactate and decreases in extracellular glucose in the primary motor cortex. These effects were modulated by experience, novelty and intensity of the behavior. The increase in extracellular lactate appears to be strongly associated with novelty of a behavior as well as the difficulty of performing a behavior. Our observations are consistent with the view that a main function of aerobic glycolysis is not to fuel the current neuronal activity but to sustain new bio-infrastructure as learning changes neural networks, chiefly through the shuttling of glucose derived carbons into the pentose phosphate pathway for the biosynthesis of nucleotides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8764159 | PMC |
http://dx.doi.org/10.3389/fnins.2021.732242 | DOI Listing |
Int J Biol Macromol
January 2025
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:
Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland.
Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!