Physical erosion and chemical weathering rates beneath glaciers are expected to increase in a warming climate with enhanced melting but are poorly constrained. We present a global dataset of cations in meltwaters of 77 glaciers, including new data from 19 Asian glaciers. Our study shows that contemporary cation denudation rates (CDRs) beneath glaciers (2174 ± 977 Σ*meq m year) are ~3 times higher than two decades ago, up to 10 times higher than ice sheet catchments (~150-2000 Σ*meq m year), up to 50 times higher than whole ice sheet means (~30-45 Σ*meq m year) and ~4 times higher than major non-glacial riverine means (~500 Σ*meq m year). Glacial CDRs are positively correlated with air temperature, suggesting glacial chemical weathering yields are likely to increase in future. Our findings highlight that chemical weathering beneath glaciers is more intense than many other terrestrial systems and may become increasingly important for regional biogeochemical cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776776PMC
http://dx.doi.org/10.1038/s41467-022-28032-1DOI Listing

Publication Analysis

Top Keywords

chemical weathering
16
beneath glaciers
16
Σ*meq year
16
times higher
16
year times
12
weathering rates
8
rates beneath
8
higher ice
8
ice sheet
8
glaciers
6

Similar Publications

Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.

Theranostics

January 2025

Department of Critical Care Medicine and Department of Anaesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China, 710032.

Record-breaking heatwaves caused by greenhouse effects lead to multiple hyperthermia disorders, the most serious of which is exertional heat stroke (EHS) with the mortality reaching 60 %. Repeat exercise with heat exposure, termed heat acclimation (HA), protects against EHS by fine-tuning feedback control of body temperature (Tb), the mechanism of which is opaque. This study aimed to explore the molecular and neural circuit mechanisms of the HA training against EHS.

View Article and Find Full Text PDF

Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.

View Article and Find Full Text PDF

Soilscapes from Byers Peninsula, Maritime Antarctic: landform-lithology controls in soil formation.

An Acad Bras Cienc

January 2025

Universidade Federal de Viçosa - UFV, Departmento de Solos, Av. Peter Henry Rolfs, s/nº, Campus Universitário Viçosa, 36570-900 Viçosa, MG, Brazil.

The Byers Peninsula, the largest ice-free area in Maritime Antarctica, is vital for studying landscape-scale natural processes due to its diverse periglacial landforms. This study aim to characterize the soils and environments of its southern sector, focusing on soil-landform-lithology interactions. Thirty-seven soil profiles were classified, collected, and chemically and physically analyzed.

View Article and Find Full Text PDF

Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation.

Environ Sci Pollut Res Int

January 2025

CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.

Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups.

View Article and Find Full Text PDF

Hydrogels are popular materials for desalination and can significantly reduce the vaporization enthalpy of water; however, there are few reports on hydrogels with a controllable multilevel structural design for water evaporation. Herein, a calcium alginate and traditional Chinese ink-based evaporator (CIE) are proposed and fabricated using directed freezing technology to construct radial channels, followed by freeze-drying and physical cross-linking. Because of the squeezing of ice crystals and the shaping effect of the PDMS template, the prepared evaporator exhibits a sea-urchin-shaped highly geometrical centrosymmetric structure with numerous multilevel pore channels, which promotes the rapid transport of water under different solar incidence angles as the sun rotates as well as overcomes the structural shrinkage of the hydrogel caused by insufficient water supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!