PGK1 represses autophagy-mediated cell death to promote the proliferation of liver cancer cells by phosphorylating PRAS40.

Cell Death Dis

Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, 9 South Lvshun Road, 116044, Dalian, Liaoning, P.R. China.

Published: January 2022

Autophagy predominantly promotes cell survival by recycling cell components, while it kills cells in specific contexts. Cell death related to autophagy plays important roles in multiple physiological and pathological situations including tumorigenesis, and the mechanism needs to be defined further. PRAS40 was found to be crucial in various cancers, and phosphorylation was reported to be involved in autophagy inhibition in monocytes. However, the detailed role of PRAS40 in autophagy and the relationship to tumorigenesis remain largely unknown. Herein we screened the binding partners of PRAS40, and found that PRAS40 interacted with Phosphoglycerate kinase 1 (PGK1). PGK1 phosphorylated PRAS40 at Threonine 246, which could be inhibited by blocking the interaction. Both in vitro and in vivo results revealed that PRAS40 mediated PGK1-induced cell growth. By tracing the mechanism, we found that PGK1 suppressed autophagy-mediated cell death, in which PRAS40 was crucial. Thus PGK1 phosphorylates PRAS40 to repress autophagy-mediated cell death under normoxia, promoting cellular proliferation. The binding of PGK1 to PRAS40 was transferred to Beclin1 under hypoxia, resulting in the increase of Beclin1 phosphorylation. These results suggest a novel model of tumorigenesis, in which PGK1 switches between repressing autophagy-mediated cell death via PRAS40 and inducing autophagy through Beclin1 according to the environmental oxygen level. Our study is anticipated to be able to offer novel insights in understanding PGK1/PRAS40 signaling hyperactivated cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776853PMC
http://dx.doi.org/10.1038/s41419-022-04499-0DOI Listing

Publication Analysis

Top Keywords

cell death
20
autophagy-mediated cell
16
pras40
11
cell
8
pras40 autophagy
8
pras40 crucial
8
death pras40
8
pgk1
7
death
5
autophagy
5

Similar Publications

Advances and applications of genome-edited animal models for severe combined immunodeficiency.

Zool Res

January 2025

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China. E-mail:

Severe combined immunodeficiency disease (SCID), characterized by profound immune system dysfunction, can lead to life-threatening infections and death. Animal models play a pivotal role in elucidating biological processes and advancing therapeutic strategies. Recent advances in gene-editing technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR/Cas9, and base editing, have significantly enhanced the generation of SCID models.

View Article and Find Full Text PDF

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.

View Article and Find Full Text PDF

Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke.

Front Mol Neurosci

January 2025

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.

PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay.

View Article and Find Full Text PDF

Comparison of autologous hematopoietic cell transplantation, matched sibling donor hematopoietic cell transplantation, and chemotherapy in patients with favorable- and intermediate-risk acute myeloid leukemia.

Front Immunol

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Introduction: Hematopoietic stem cell transplantation (HSCT) and chemotherapy are considered potentially curative options for post-remission therapy in acute myeloid leukemia (AML). However, the comparative effectiveness of these approaches in favorable- and intermediate-risk AML remains unclear and requires further investigation.

Methods: In this retrospective study, 111 patients diagnosed with de novo favorable- and intermediate-risk AML, categorized according to the ELN 2022 guidelines, were investigated to compare outcomes following autologous HSCT (auto-HSCT), matched sibling donor HSCT (MSD-HSCT), and chemotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!