Objectives: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. Previously, rare mutations in low-density lipoprotein receptor (LDLR) genes and apolipoprotein A V (APOA5) have been shown to contribute to MI risk in individual families. Exosomes provide a potential source of biomarkers for MI. This study is to determine the role of LDLR and APOA5 as biomarkers for early diagnosis of MI.
Methods: In this study, we detected the levels of LDLR, APOA5, and cardiac troponin T in plasma-derived exosomes in MI patients and age-matched healthy people by enzyme linked immunosorbent assay and observed the morphology and number of exosomes using transmission electron microscope and nanoparticle tracking analysis. Oxygen-glucose deprivation (OGD) method was used to induce MI in H9C2 cardiomyocytes to explore the effect of exosomes.
Results: We found that the levels of LDLR and APOA5 in plasma-derived exosomes in MI patients were significantly decreased. Furthermore, exosomes of MI patients were significantly larger in size and the concentration of exosomes was higher than that of age-matched non-MI people. In vitro experiments showed that OGD treatment induced apoptosis of myocardial cells and decreased the expression of LDLR and APOA5, while addition of exosomes isolated from healthy people rescued these phenotypes.
Conclusion: Exosomal APOA5 and LDLR are intimately associated with MI, and thereby have the potential to function as diagnostic markers of MI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jjcc.2021.10.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!