Graphene oxide (GO), a kind of polymer, is often selected as a controlled released agent, whereas titanium dioxide (TiO₂) nanotubes are commonly used as a drug-coated carrier. This study was conducted to develop methods for manufacturing the GO/TiO₂/HHC-36 composite coating and exploring its bacteriostat and osteogenesis properties. The GO/TiO₂ nanotubes were prepared by electrochemical methods and HHC-36 was then adsorbed to GO/TiO₂to obtain GO/TiO₂/HHC-36. Sustained release of HHC-36 was analyzed and the antibacterial effect was examined by the inhibition zone test. The biocompatibility and osteogenesis of GO/TiO₂/HHC-36 were explored. Finally, the osteogenesic property of the composite coating was investigated in a rat femoral defect model GO/TiO₂/HHC-36 was successfully prepared and had good controlled released performance The inhibit zone size of S. was 2.1 mm and that of was 3.0 mm. GO/TiO₂/HHC-36 showed good biocompatibility with mesenchymal stem cells (MSCs) and promoted their adhesion, migration, and differentiation. In addition, the secretion of alkaline phosphatase, collagen, mineralized matrix and osteoblast-related nutrient factors of MSCs was increased after treatment with GO/TiO₂/HHC-36. Furthermore, GO/TiO₂/HHC-36 also stimulated endotheliocytes to secrete VEGF, leading to angiogenesis. Finally, implantation of GO/TiO₂/HHC-36 in the rat femur defect model resulted in MSC migration and increased expression of osteoblast related proteins. The composite coating with controlled released of HHC-36 showed distinct antibacterial properties and promoted osteogenesis and

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2021.3013DOI Listing

Publication Analysis

Top Keywords

composite coating
16
controlled released
12
bacteriostat osteogenesis
8
go/tio₂/hhc-36
8
defect model
8
composite
4
coating graphene
4
graphene oxide/tio₂
4
oxide/tio₂ nanotubes/hhc-36
4
nanotubes/hhc-36 antibacterial
4

Similar Publications

Surface coating nanoarchitectonics for optimizing cytocompatibility and antimicrobial activity: The impact of hyaluronic acid positioning as the outermost layer.

Int J Biol Macromol

January 2025

Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:

Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.

View Article and Find Full Text PDF

As modification strategies are actively developed, the photothermal effect is expected to be a viable way to enhance the PEC water splitting performance. Herein, we demonstrate that the photothermal polyaniline (PANI) layer inserted between CoF cocatalyst and BiVO can enhance the photocurrent density of pure BiVO by 3.50 times.

View Article and Find Full Text PDF

The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!