The key factors playing a role in the pathogenesis of metabolic alterations observed in many patients with obesity have not been fully characterized. Their identification is crucial, and it would represent a fundamental step towards better management of this urgent public health issue. This aim could be accomplished by exploiting the potential of machine learning (ML) technology. In a single-centre study ( = 2567), we used an ML analysis to cluster patients with metabolically healthy (MHO) or metabolically unhealthy (MUO) obesity, based on several clinical and biochemical variables. The first model provided by ML was able to predict the presence/absence of MHO with an accuracy of 66.67% and 72.15%, respectively, and included the following parameters: HOMA-IR, upper body fat/lower body fat, glycosylated haemoglobin, red blood cells, age, alanine aminotransferase, uric acid, white blood cells, insulin-like growth factor 1 (IGF-1) and gamma-glutamyl transferase. For each of these parameters, ML provided threshold values identifying either MUO or MHO. A second model including IGF-1 zSDS, a surrogate marker of IGF-1 normalized by age and sex, was even more accurate with a 71.84% and 72.3% precision, respectively. Our results demonstrated high IGF-1 levels in MHO patients, thus highlighting a possible role of IGF-1 as a novel metabolic health parameter to effectively predict the development of MUO using ML technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779369PMC
http://dx.doi.org/10.3390/nu14020373DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning technology
8
metabolically healthy
8
study 2567
8
blood cells
8
igf-1
5
application machine
4
technology definition
4
definition metabolically
4
healthy unhealthy
4

Similar Publications

Who is coming in? Evaluation of physician performance within multi-physician emergency departments.

Am J Emerg Med

January 2025

Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.

Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.

Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Prediction of Thermodynamic Properties of C-Based Fullerenols Using Machine Learning.

J Chem Theory Comput

January 2025

Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.

Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.

View Article and Find Full Text PDF

This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!