AI Article Synopsis

  • The vitamin D receptor (VDR) is important for how the body reacts to vitamin D and can be influenced by genetics and the environment.
  • This study reviewed existing research to see how specific genetic variants (BsmI, TaqI, ApaI, FokI) affect people's responses to vitamin D supplements.
  • Results suggest that while BsmI and ApaI don't significantly affect response, the TaqI and FokI variants may enhance the effectiveness of vitamin D supplementation in certain individuals.

Article Abstract

The vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators, is crucial to calcitriol signalling. VDR is regulated by genetic and environmental factors and it is hypothesised that the response to vitamin D supplementation could be modulated by genetic variants in the gene. The best studied polymorphisms in the gene are Apal (rs7975232), BsmI (rs1544410), Taql (rs731236) and Fokl (rs10735810). We conducted a systematic review and meta-analysis to evaluate the response to vitamin D supplementation according to the BsmI, TaqI, ApaI and FokI polymorphisms. We included studies that analysed the relationship between the response to vitamin D supplementation and the genotypic distribution of these polymorphisms. We included eight studies that enrolled 1038 subjects. The results showed no significant association with the BsmI and ApaI polymorphisms ( = 0.081 and = 0.63) and that the variant allele (Tt+tt) of the TaqI polymorphism and the FF genotype of the FokI variant were associated with a better response to vitamin D supplementation ( = 0.02 and < 0.001). In conclusion, the TaqI and FokI polymorphisms could play a role in the modulation of the response to vitamin D supplementation, as they are associated with a better response to supplementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780067PMC
http://dx.doi.org/10.3390/nu14020360DOI Listing

Publication Analysis

Top Keywords

response vitamin
24
vitamin supplementation
24
vitamin
8
vitamin receptor
8
systematic review
8
review meta-analysis
8
foki polymorphisms
8
polymorphisms included
8
included studies
8
associated better
8

Similar Publications

Background: Epidemiological associations between kidney stone disease (KSD) and gastrointestinal disorders have been reported, and intestinal homeostasis plays a critical role in stone formation. However, the underlying intrinsic link is not adequately understood. This study aims to investigate the genetic associations between these two types of diseases.

View Article and Find Full Text PDF

Following myocardial infarction (MI), the accumulation of CD86-positive macrophages in the ischemic injury zone leads to secondary myocardial damage. Precise pharmacological intervention targeting this process remains challenging. This study engineered a nanotherapeutic delivery system with CD86-positive macrophage-specific targeting and ultrasound-responsive release capabilities.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Microglia are dominant immune cells residing in the brain that regulate brain homeostasis and T-cell responses. An important immune function of microglia involves presenting microbial antigens to mucosal-associated invariant T (MAIT) cells; MAIT cells recognize microbial vitamin B-derived metabolites presented by the MHC class I-like molecule, MR1. Our recent findings highlighted a detrimental role for the MR1/MAIT cell axis in Alzheimer's disease (AD) using the 5XFAD mouse model.

View Article and Find Full Text PDF

Background: Disrupted balance between amyloidogenic and non-amyloidogenic pathways leads to cognitive decline in Alzheimer's disease (AD). Evidence suggests vitamin A (VA) supplementation favors the non-amyloidogenic pathway through upregulation of α-secretase. Originally used to map embryonic retinoic acid (RA) signaling, RARE-LacZ mice possess multiple LacZ genes controlled by retinoic acid response elements (RAREs).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease and a leading cause of senile dementia. Accumulation of amyloid-β (Aβ) in the brains causes chronic neuroinflammation, synaptic loss, and neurovascular damage, which is thought to initiate decades-long AD pathogenesis. Recent clinical trials for anti-Aβ immunotherapy highlights the utility of biomarkers that faithfully reflect Aβ-related brain pathology to diagnose AD at the preclinical stage, to predict the onset and progression of the disease, and to assess the therapeutic efficacy of drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!