Magneto-Mechanical Enhancement of Elastic Moduli in Magnetoactive Elastomers with Anisotropic Microstructures.

Materials (Basel)

Leibniz Intitute of Polymer Research, 01069 Dresden, Germany.

Published: January 2022

Magnetoactive elastomers (MAEs) have gained significant attention in recent years due to their wide range of engineering applications. This paper investigates the important interplay between the particle microstructure and the sample shape of MAEs. A simple analytical expression is derived based on geometrical arguments to describe the particle distribution inside MAEs. In particular, smeared microstructures are considered instead of a discrete particle distribution. As a consequence of considering structured particle arrangements, the elastic free energy is anisotropic. It is formulated with the help of the rule of mixtures. We show that the enhancement of elastic moduli arises not only from the induced dipole-dipole interactions in the presence of an external magnetic field but also considerably from the change in the particle microstructure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8780743PMC
http://dx.doi.org/10.3390/ma15020645DOI Listing

Publication Analysis

Top Keywords

enhancement elastic
8
elastic moduli
8
magnetoactive elastomers
8
particle microstructure
8
particle distribution
8
particle
5
magneto-mechanical enhancement
4
moduli magnetoactive
4
elastomers anisotropic
4
anisotropic microstructures
4

Similar Publications

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

Affected by weakening effect of water in the goaf, the bearing capacity of coal pillar reduced, and coal pillar rock burst is prone to occur, which is a serious threat to mine safety in production. In order to study the equivalent width and stability of coal pillar in water-rich coal seam, taking the section coal pillar of a working face as the research object, combined with laboratory test, theoretical analysis, simulation and engineering practice, the stress, elastic core area width, damage degree and energy accumulation of 36 m water-immersed coal pillar and 26 m, 28 m, 30 m, 32 m, 36 m unimmersed coal pillars are analyzed. The research results show that: (1) The reasonable width of coal pillar under flooded and unflooded conditions is 36.

View Article and Find Full Text PDF

Chitosan/squid ring teeth protein hydrogels for the controlled release of curcumin.

Int J Biol Macromol

December 2024

Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Biocompatible and degradable hydrogels are extensively utilized for the delivery and controlled release of bioactive agents. Chitosan/squid ring teeth protein (SRT) hydrogels (CH/SRTs) cross-linked by genipin were fabricated, and their gel properties and structural characteristics were analyzed across varying SRT contents. Additionally, the curcumin-release behavior of curcumin-loaded CH/SRTs (Cur-CH/SRTs) was evaluated.

View Article and Find Full Text PDF

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

AI-driven feature selection and epigenetic pattern analysis: A screening strategy of CpGs validated by pyrosequencing for body fluid identification.

Forensic Sci Int

December 2024

Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China. Electronic address:

Identification of body fluid stain at crime scene is one of the important tasks of forensic evidence analysis. Currently, body fluid-specific CpGs detected by DNA methylation microarray screening, have been widely studied for forensic body fluid identification. However, some CpGs have limited ability to distinguish certain body fluid types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!