This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young's modulus of common pine ( L.), pedunculate oak ( L.), and small-leaf lime ( Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young's modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young's moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778518PMC
http://dx.doi.org/10.3390/ma15020632DOI Listing

Publication Analysis

Top Keywords

thermal diffusivity
20
mechanical properties
12
brinell hardness
12
diffusivity mechanical
8
mechanical characteristics
8
hardness microhardness
8
microhardness young's
8
young's modulus
8
common pine
8
diffusivity tensor
8

Similar Publications

Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.

View Article and Find Full Text PDF

This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.

View Article and Find Full Text PDF

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

Thermally Stable Anthracene-Based 2D/3D Heterostructures for Perovskite Solar Cells.

ACS Appl Mater Interfaces

December 2024

School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.

Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI).

View Article and Find Full Text PDF

The realization of low thermal conductivity at high temperatures (0.11 W m K 800 °C) in ambient air in a porous solid thermal insulation material, using stable packed nanoparticles of high-entropy spinel oxide with 8 cations (HESO-8 NPs) with a relatively high packing density of ≈50%, is reported. The high-density HESO-8 NP pellets possess around 1000-fold lower thermal diffusivity than that of air, resulting in much slower heat propagation when subjected to a transient heat flux.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!