This paper investigates the compression behavior and failure criteria of lightweight aggregate concrete (LAC) under triaxial loading. A total of 156 specimens were tested for three parameters: concrete strength, lateral confining pressure and aggregate immersion time, and their effects on the failure mode of LAC and the triaxial stress-strain relationship of LAC is studied. The research indicated that, as the lateral constraint of the specimen increases, the failure patterns change from vertical splitting failure to oblique shearing failure and then to indistinct traces of damage. The stress-strain curve of LAC specimens has an obvious stress plateau, and the curve no longer appears downward when the confining pressure exceeds 12 MPa. According to the experimental phenomenon and test data, the failure criterion was examined on the Mohr-Coulomb theory, octahedral shear stress theory and Rendulic plane stress theory, which well reflects the behavior of LAC under triaxial compression. For the convenience of analysis and application, the stress-strain constitutive models of LAC under triaxial compression are recommended, and these models correlate well with the test results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777941PMC
http://dx.doi.org/10.3390/ma15020507DOI Listing

Publication Analysis

Top Keywords

lac triaxial
16
triaxial compression
12
failure criteria
8
lightweight aggregate
8
aggregate concrete
8
confining pressure
8
stress theory
8
failure
7
lac
6
triaxial
5

Similar Publications

The purpose of the study was to assess the influence of a preceding mountain ultramarathon on the impact between the foot and the ground and the resulting soft tissue vibrations (STV). Two sessions of measurements were performed on 52 trail runners, before and just after mountain trail running races of various distances (from 40 to 171 km). Triaxial accelerometers were used to quantify the foot-ground impact (FGI) and STV of both (GAS) and (VL) muscles during level treadmill running at 10 km·h.

View Article and Find Full Text PDF

This paper investigates the compression behavior and failure criteria of lightweight aggregate concrete (LAC) under triaxial loading. A total of 156 specimens were tested for three parameters: concrete strength, lateral confining pressure and aggregate immersion time, and their effects on the failure mode of LAC and the triaxial stress-strain relationship of LAC is studied. The research indicated that, as the lateral constraint of the specimen increases, the failure patterns change from vertical splitting failure to oblique shearing failure and then to indistinct traces of damage.

View Article and Find Full Text PDF

Effect of Thigh-Compression Shorts on Muscle Activity and Soft-Tissue Vibration During Cycling.

J Strength Cond Res

August 2019

Inter-University Laboratory of Human Movement Sciences, University Lyon, UJM-Saint-Etienne, Saint Etienne, France.

Hintzy, F, Gregoire, N, Samozino, P, Chiementin, X, Bertucci, W, and Rossi, J. Effect of thigh-compression shorts on muscle activity and soft-tissue vibration during cycling. J Strength Cond Res 33(8): 2145-2152, 2019-This study examined the effects of different levels of thigh compression (0, 2, 6, and 15 mm Hg) in shorts on both vibration and muscle activity of the thigh during cycling with superimposed vibrations.

View Article and Find Full Text PDF

Maximalist vs. minimalist shoes: dose-effect response of elastic compression on muscular oscillations.

J Sports Med Phys Fitness

October 2017

UE 3920 Marqueurs Pronostiques et Facteurs de Régulation des Pathologies Cardiaques et Vasculaires Plateforme Exercice Performance Santé, Innovation, Université de Franche-Comté, Besançon, France -

Background: The aim of this study was to establish whether maximalist shoes engender fewer muscular oscillations than minimalist shoes and determine to what extent these shoes, when combined with elastic compression (EC), help reduce muscle oscillations. For that purpose, we tested the effects of various levels of compression on the muscular oscillations in maximalist and minimalist footwear.

Methods: Eleven volunteers executed 16 one-minute passages on a flat treadmill in a randomized order: maximalists or minimalists, walking (6 km/h) or running (10 km/h), without EC (control condition [CON]) or with EC applying different pressures (9.

View Article and Find Full Text PDF

Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!