The emerging pathogen  is an emerging fungal pathogen that was associated with nosocomial infectious outbreaks. Its worldwide incidence and the emerging multidrug-resistant strains highlight the urgency for novel and effective antifungal treatment strategies. essential oil (LSEO) proved antifungal activity, including anti-Candida. However, it may undergo irreversible changes when in contact with external agents without adequate protection. Herein, we encapsulated LSEO in nanostructured lipid carriers (NLC) through the hot emulsification method followed by sonication. NLC matrix was based on oleic acid and Compritol 888, or a combination of carnauba wax and beeswax, stabilized by sodium dodecyl sulfate. Eight formulations were produced and characterized by the determination of the particle size (213.1 to 445.5 nm), polydispersity index (around 0.3), and ζ-potential (-93.1 to -63.8 mV). The antifungal activity of nanoparticles and LSEO against and the in vivo toxicity in model were also evaluated. Both NLC and LSEO exhibited potent activity against the yeast, with Minimum Inhibitory Concentration between 281 and 563 µg/mL, and did not evidence toxicity in the in vivo model. Therefore, this study confirms the viability of NLCs loaded with LSEO in combating drug-resistant pathogens as a potential new therapeutic strategy for managing of candidemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781248PMC
http://dx.doi.org/10.3390/pharmaceutics14010180DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
8
lipid carriers
8
essential oil
8
antifungal activity
8
lseo
5
carriers loaded
4
loaded essential
4
oil strategy
4
strategy combat
4
combat multidrug-resistant
4

Similar Publications

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

University of Fribourg, Adolphe Merkle Institute, Fribourg, Switzerland.

Background: Tau protein phosphorylation and aggregation are the pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. Multiple phosphorylation sites in Tau protein at serine (S), threonine (T), and tyrosine result in high heterogeneity and enhanced aggregation kinetics.

Method: Here, we used nanopores coated with a fluid lipid bilayer to characterize native and hyperphosphorylated Tau proteins on a single-molecule level.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

IMDEA Nanociencia, Madrid, Spain.

Background: About half of the patients suffering from Alzheimer's disease (AD) display sleeping disorders. Disruptions in the central circadian clock (CC), located in the brain, accelerate AD pathogenesis, making the CC a promising target. In preclinical trials, this strategy have shown efficacy but clinical results are inconsistent.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.

View Article and Find Full Text PDF

The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!