Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, since transit across the nuclear membrane is not necessary, and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Delivery of RNA to target organ(s) has previously been challenging due to RNA's rapid degradation in biological systems, but cationic lipids complexed with RNA, as well as lipid nanoparticles (LNPs), have allowed for delivery and expression of the complexed RNA both in vitro and in vivo. This review will focus on the non-viral lipid-mediated delivery of RNAs, including mRNA, siRNA, shRNA, and microRNA, to the central nervous system (CNS), an organ with at least two unique challenges. The CNS contains a large number of slowly dividing or non-dividing cell types and is protected by the blood brain barrier (BBB). In non-dividing cells, RNA-lipid complexes demonstrated increased transfection efficiency relative to DNA transfection. The efficiency, timing of the onset, and duration of expression after transfection may determine which nucleic acid is best for which proposed therapy. Expression can be seen as soon as 1 h after RNA delivery, but duration of expression has been limited to 5-7 h. In contrast, transfection with a DNA lipoplex demonstrates protein expression within 5 h and lasts as long as several weeks after transfection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779867 | PMC |
http://dx.doi.org/10.3390/pharmaceutics14010165 | DOI Listing |
Pol J Vet Sci
December 2024
Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
CJC Open
December 2024
Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
Background: The Weeneebayko Area Health Authority (WAHA) is a regional, community-based Indigenous health authority in Northern Ontario, Canada. From September 2022 to March 2023, the WAHA and University Health Network engaged in a partnership that designed a collaborative model of care to address inequities in cardiology specialist access in Northern Ontario. This model implemented a digital therapeutic for heart failure, (the Medly program) and in-person cardiology clinics in the region.
View Article and Find Full Text PDFJACS Au
December 2024
Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.
View Article and Find Full Text PDFPerspect Med Educ
December 2024
Department of Neuroscience at Carleton University, Carleton University, Ottawa, Ontario, Canada.
Background: The Truth and Reconciliation Commission of Canada called upon health professional programs to teach about historical and on-going colonalism. Since these calls to action, there has been an increase in educational opportunities on the topic. Although it is generally assumed that learning about colonialism will reduce racism and improve allyship towards Indigenous Peoples, an evaluation of this assumption is needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!