Naturally inspired biomaterials such as calcium carbonate, produced in biological systems under specific conditions, exhibit superior properties that are difficult to reproduce in a laboratory. The emergence of microfluidic technologies provides an effective approach for the synthesis of such materials, which increases the interest of researchers in the creation and investigation of crystallization processes. Besides accurate tuning of the synthesis parameters, microfluidic technologies also enable an analysis of the process in situ with a range of methods. Understanding the mechanisms behind the microfluidic biomineralization processes could open a venue for new strategies in the development of advanced materials. In this review, we summarize recent advances in microfluidic synthesis and analysis of CaCO-based bioinspired nano- and microparticles as well as core-shell structures on its basis. Particular attention is given to the application of calcium carbonate particles for drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777975PMC
http://dx.doi.org/10.3390/pharmaceutics14010139DOI Listing

Publication Analysis

Top Keywords

microfluidic synthesis
8
synthesis analysis
8
drug delivery
8
calcium carbonate
8
microfluidic technologies
8
microfluidic
5
analysis bioinspired
4
bioinspired structures
4
structures based
4
based caco
4

Similar Publications

Bio-Layer Interferometry (BLI) is a technique that uses optical biosensing to analyze interactions between molecules. The analysis of molecular interactions is measured in real-time and does not require fluorescent tags. BLI uses disposable biosensors that come in a variety of formats to bind different ligands including biotin, hexahistidine, GST, and the Fc portion of antibodies.

View Article and Find Full Text PDF

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface.

Anal Chim Acta

February 2025

Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.

View Article and Find Full Text PDF

Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration.

Int J Mol Sci

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.

View Article and Find Full Text PDF

Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons.

Molecules

December 2024

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!