Formulation of Nano/Micro-Carriers Loaded with an Enriched Extract of Coffee Silverskin: Physicochemical Properties, In Vitro Release Mechanism and In Silico Molecular Modeling.

Pharmaceutics

REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

Published: January 2022

Designing strategies for an effective transformation of food waste into high-value products is a priority to address environmental sustainability concerns. Coffee silverskin is the major by-product of the coffee roasting industry, being rich in compounds with health benefits. Such composition gives it the potential to be transformed into high-value products. In this study, coffee silverskin extracts were enriched, regarding caffeine and chlorogenic acid contents, by adsorbent column chromatography. The compounds content increased 3.08- and 2.75-fold, respectively, compared to the original extract. The enriched fractions were loaded into nano-phytosomes or cholesterol-incorporated nano-phytosomes (first coating layers) to improve the physiochemical properties and permeation rate. These nano-lipid carriers were also subjected to a secondary coating with different natural polymers to improve protection and stability against degradation. In parallel, and for comparison, different natural polymers were also used as first coating layers. The produced particles were evaluated regarding product yield, encapsulation efficiency, loading capacity, particle size, surface charge, and in vitro release simulating gastrointestinal conditions. All samples exhibited anionic surface charge. FTIR and molecular docking confirmed interactions between the phytoconstituents and lipid bilayers. The best docking score was observed for 5-caffeoylquinic acid (chlorogenic acid) exhibiting a stronger hydrogen binding to the lipid bilayer. Among several kinetic models tested, the particle release mechanism fitted well with the First-order, Korsmeyer-Peppas, and Higuchi models. Moreover, most of the formulated particles followed the diffusion-Fick law and anomalous transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8781543PMC
http://dx.doi.org/10.3390/pharmaceutics14010112DOI Listing

Publication Analysis

Top Keywords

coffee silverskin
12
vitro release
8
release mechanism
8
high-value products
8
chlorogenic acid
8
coating layers
8
natural polymers
8
surface charge
8
formulation nano/micro-carriers
4
nano/micro-carriers loaded
4

Similar Publications

Coffee Silverskin as a Potential Ingredient for Functional Foods: Recent Advances and a Case Study with Chocolate Cake.

Foods

December 2024

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Coffee silverskin (CS) is a by-product of the coffee roasting process that is known for its potential as a fiber source with antioxidant properties. Therefore, this study aimed to provide an overview of the latest research on CS as a potential ingredient for functional foods and to evaluate the effect of adding different amounts of CS on the functional and sensory attributes of chocolate cakes. The addition of CS increased the total dietary fiber content, antioxidant capacity and the contents of extractable and non-extractable phenolics in the cakes.

View Article and Find Full Text PDF

Green coffee beans, rejected for commercial use because of glyphosate contamination, were examined to monitor their glyphosate levels from harvest, through roasting, until various coffee extractions. The green beans, Arabica and Robusta, exhibited glyphosate levels above the EU-MRL (0.14-0.

View Article and Find Full Text PDF

Coffee and coffee by-products contain several chemical compounds of great relevance, such as chlorogenic acid (CGA), trigonelline, and caffeine. Furthermore, yeasts have been the target of studies for their use as probiotics because of their interesting biochemical characteristics. The combined administration of probiotic microorganisms with components that provide health benefits mediated by alginate encapsulation is an alternative that ensures the stability of cells and chemical compounds.

View Article and Find Full Text PDF

Bioactive Compounds and Valorization of Coffee By-Products from the Origin: A Circular Economy Model from Local Practices in Zongolica, Mexico.

Plants (Basel)

September 2024

Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Cerro de Nahuatzen 85, La Piedad 59379, Michoacán, Mexico.

Article Synopsis
  • The study focuses on identifying valuable organic and inorganic compounds found in green coffee and its by-products, such as dried cascara, parchment, and silverskin, to explore their reuse in various applications like beverages and fertilizers.
  • Metabolomic profiling using HPLC-ESI-HRMS revealed 93 different bioactive molecules in dried cascara, including organic acids, alkaloids, and phenolic compounds, indicating its rich composition.
  • The research also utilized DART-MS for metabolite identification, confirming the presence of caffeine and antioxidants while showcasing the mineral content, which highlights the potential for sustainable practices and economic benefits for local coffee-growing communities.
View Article and Find Full Text PDF

The utilization of polyols as green solvents for extracting bioactive compounds from plant materials has gained attention due to their safety and inert behavior with plant bioactive chemicals. This study explores the sustainable extraction of phenolic compounds and natural antioxidants from coffee silverskin using the microwave-assisted extraction (MAE) method with polyol-based solvents: glycerin, propylene glycol (PG), butylene glycol (BG), methylpropanediol (MPD), isopentyldiol (IPD), pentylene glycol, 1,2-hexanediol, and hexylene glycol (HG). A comparative analysis was conducted on conventional and non-conventional solvent extractions, focusing on their impact on the bioactive compounds of MAE, encompassing parameters such as total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities like the 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay (DPPH), the 2,2'-azino-bis(-3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging assay (ABTS), and the ferric reducing antioxidant power assay (FRAP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!