Oligonucleotides with the sequences 5'-GTG AUA TGC, 5'-GCA TAU CAC and 5'-GUG ATA UGC, where U is 2'--propargyl uridine, were subjected to post-synthetic Cu(I)-catalyzed azide-alkyne cycloaddition to attach 1,4,7,10-tetraazacyclododecane (cyclen) and two well-known DNA intercalating dyes: thioxanthone and 1,8-naphthalimide. We propose a convenient cyclen protection-deprotection strategy that allows efficient separation of the resulting polyamine-oligonucleotide conjugates from the starting materials by RP-HPLC to obtain high-purity products. In this paper, we present hitherto unknown macrocyclic polyamine-oligonucleotide conjugates and their hybridization properties reflected in the thermal stability of thirty-two DNA duplexes containing combinations of labeled strands, their unmodified complementary strands, and strands with single base pair mismatches. Circular dichroism measurements showed that the B-conformation is retained for all dsDNAs consisting of unmodified and modified oligonucleotides. An additive and destabilizing effect of cyclen moieties attached to dsDNAs was observed. measurements indicate that placing the hydrophobic dye opposite to the cyclen moiety can reduce its destabilizing effect and increase the thermal stability of the duplex. Interestingly, the cyclen-modified U showed significant selectivity for TT mismatch, which resulted in stabilization of the duplex. We conclude the paper with a brief review and discussion in which we compare our results with several examples of oligonucleotides labeled with polyamines at internal strand positions known in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778778PMC
http://dx.doi.org/10.3390/pharmaceutics14010066DOI Listing

Publication Analysis

Top Keywords

polyamine-oligonucleotide conjugates
12
thermal stability
12
intercalating dyes
8
dna duplexes
8
conjugates 2'-me-triazole-linked
4
2'-me-triazole-linked 14710-tetraazacyclododecane
4
14710-tetraazacyclododecane intercalating
4
dyes thermal
4
stability dna
4
duplexes oligonucleotides
4

Similar Publications

Oligonucleotides with the sequences 5'-GTG AUA TGC, 5'-GCA TAU CAC and 5'-GUG ATA UGC, where U is 2'--propargyl uridine, were subjected to post-synthetic Cu(I)-catalyzed azide-alkyne cycloaddition to attach 1,4,7,10-tetraazacyclododecane (cyclen) and two well-known DNA intercalating dyes: thioxanthone and 1,8-naphthalimide. We propose a convenient cyclen protection-deprotection strategy that allows efficient separation of the resulting polyamine-oligonucleotide conjugates from the starting materials by RP-HPLC to obtain high-purity products. In this paper, we present hitherto unknown macrocyclic polyamine-oligonucleotide conjugates and their hybridization properties reflected in the thermal stability of thirty-two DNA duplexes containing combinations of labeled strands, their unmodified complementary strands, and strands with single base pair mismatches.

View Article and Find Full Text PDF

Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics.

Future Med Chem

July 2016

Department of Chemistry & Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.

Chemical modification and/or the conjugation of small functional molecules to oligonucleotides have significantly improved their biological and biophysical properties, addressing issues such as poor cell penetration, stability to nucleases and low affinity for their targets. Here, the authors review the literature reporting on the biophysical, biochemical and biological properties of one particular class of modification - polyamine-oligonucleotide conjugates. Naturally derived and synthetic polyamines have been grafted onto a variety of oligonucleotide formats, including antisense oligonucleotides and siRNAs.

View Article and Find Full Text PDF

A simple and efficient method of synthesis of polyamine-oligonucleotide conjugates in high yields (up to 95%) was suggested. The terminal phosphate group of deprotected oligonucleotides was selectively activated with the redox pair triphenylphosphine-dipyridyl disulfide in the presence of a nucleophilic catalyst, and the activated oligonucleotide derivative was subjected to the reaction with a polyamine.

View Article and Find Full Text PDF

A convenient and efficient method for three-dimensional immobilizing oligonucleotides on glass was developed using oligonucleotide derivatives bearing a polyamine linker (PA-oligo conjugates). Polyamine (polylysine, poly(lysine, phenylalanine), polyethyleneimine) residues stipulate durable fixation of such conjugates to the glass surface with a high yield (90-95%). A DNA fragment (414-mer) is hybridized specifically to an immobilized oligonucleotide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!