Synthesis and Characterization of a New Norfloxacin/Resorcinol Cocrystal with Enhanced Solubility and Dissolution Profile.

Pharmaceutics

Departament d'Enginyeria Química i Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.

Published: December 2021

A new cocrystal of Norfloxacin, a poorly soluble fluoroquinolone antibiotic, has been synthetized by a solvent-mediated transformation experiment in toluene, using resorcinol as a coformer. The new cocrystal exists in both anhydrous and monohydrate forms with the same (1:1) Norfloxacin/resorcinol stoichiometry. The solubility of Norfloxacin and the hydrated cocrystal were determined by the shake-flask method. While Norfloxacin has a solubility of 0.32 ± 0.02 mg/mL, the cocrystal has a solubility of 2.64 ± 0.39 mg/mL, approximately 10-fold higher. The dissolution rate was tested at four biorelevant pH levels of the gastrointestinal tract: 2.0, 4.0, 5.5, and 7.4. In a first set of comparative tests, the dissolution rate of Norfloxacin and the cocrystal was determined separately at each pH value. Both solid forms showed the highest dissolution rate at pH 2.0, where Norfloxacin is totally protonated. Then, the dissolution rate decreases as pH increases. In a second set of experiments, the dissolution of the cocrystal was evaluated by a unique dissolution test, in which the pH dynamically changed from 2.0 to 7.4, stepping 30 min at each of the four biorelevant pH values. Results were quite different in this case, since dissolution at pH 2 affects the behavior of Norfloxacin at the rest of the pH values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778133PMC
http://dx.doi.org/10.3390/pharmaceutics14010049DOI Listing

Publication Analysis

Top Keywords

dissolution rate
16
dissolution
8
cocrystal determined
8
rate norfloxacin
8
cocrystal
7
norfloxacin
6
synthesis characterization
4
characterization norfloxacin/resorcinol
4
norfloxacin/resorcinol cocrystal
4
cocrystal enhanced
4

Similar Publications

Encapsulation of Hydrogen Peroxide in PVA/PVP Hydrogels for Medical Applications.

Gels

January 2025

Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Researchers have been investigating the physical and morphological properties of biodegradable polymer and copolymer films, blending them with other chemicals to solve challenges in medical, industrial, and eco-environmental fields. The present study introduces a novel, straightforward method for preparing biodegradable hydrogels based on polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) for medical applications. The resulting PVA/PVP-based hydrogel uniquely combines the water absorbency, biocompatibility, and biodegradability of the polymer composite.

View Article and Find Full Text PDF

Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery.

Pharm Res

January 2025

Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.

Improving the bioavailability  of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.

View Article and Find Full Text PDF

Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier.

Int J Biol Macromol

January 2025

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.

View Article and Find Full Text PDF

Within the context of polypropylene recycling by dissolution, the potential degradation of polypropylene in solution has been investigated using in situ NIR and Raman spectroscopy. Pure polypropylene, completely free of additives, and commercial polypropylene, low in additives, are degraded on purpose under different conditions. Genetic algorithm combined with partial least squares (GA-PLS) models have been built based on near-infrared (NIR) spectra, and partial least squares (PLS) models based on Raman spectra, to predict the mass average molar mass and the chain-scission rate, respectively, during the degradation process.

View Article and Find Full Text PDF

The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!