Amanita poisoning is one of the most deadly types of mushroom poisoning. α-Amanitin is the main lethal toxin in amanita, and the human-lethal dose is about 0.1 mg/kg. Most of the commonly used detection techniques for α-amanitin require expensive instruments. In this study, the α-amanitin aptamer was selected as the research object, and the stem-loop structure of the original aptamer was not damaged by truncating the redundant bases, in order to improve the affinity and specificity of the aptamer. The specificity and affinity of the truncated aptamers were determined using isothermal titration calorimetry (ITC) and gold nanoparticles (AuNPs), and the affinity and specificity of the aptamers decreased after truncation. Therefore, the original aptamer was selected to establish a simple and specific magnetic bead-based enzyme linked immunoassay (MELISA) method for α-amanitin. The detection limit was 0.369 μg/mL, while, in mushroom it was 0.372 μg/mL and in urine 0.337 μg/mL. Recovery studies were performed by spiking urine and mushroom samples with α-amanitin, and these confirmed the desirable accuracy and practical applicability of our method. The α-amanitin and aptamer recognition sites and binding pockets were investigated in an in vitro molecular docking environment, and the main binding bases of both were T3, G4, C5, T6, T7, C67, and A68. This study truncated the α-amanitin aptamer and proposes a method of detecting α-amanitin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779134PMC
http://dx.doi.org/10.3390/molecules27020538DOI Listing

Publication Analysis

Top Keywords

α-amanitin aptamer
12
α-amanitin
9
mushroom samples
8
aptamer selected
8
original aptamer
8
affinity specificity
8
method α-amanitin
8
aptamer
7
utilizing dna
4
dna aptamer
4

Similar Publications

Adenosine triphosphate (ATP), the primary energy currency in cells, is dynamically regulated across different subcellular compartments. The ATP interplay between mitochondria and endoplasmic reticulum (ER) underscores their coordinated roles in various biochemical processes, highlighting the necessity for precise profiling of subcellular ATP dynamics. Here we present an exogenously and endogenously dual-regulated DNA nanodevice for spatiotemporally selective, subcellular-compartment specific signal amplification in ATP sensing.

View Article and Find Full Text PDF

Glycosylated RNAs (glycoRNAs) have recently emerged as a new class of molecules of substantial interest owing to their potential roles in cellular processes and diseases. However, studying glycoRNAs is challenging owing to the lack of effective research tools including, but not limited to, imaging techniques to study the spatial distribution of glycoRNAs. Recently, we reported the development of a glycoRNA imaging technique, called sialic acid aptamer and RNA in situ hybridization-mediated proximity ligation assay (ARPLA), to visualize sialic acid-containing glycoRNAs with high sensitivity and specificity.

View Article and Find Full Text PDF

A smart responsive NIR-operated chitosan-based nanoswitch to induce cascade immunogenic tumor ferroptosis via cytokine storm.

Carbohydr Polym

March 2025

College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China. Electronic address:

In this work we present a near-infrared (NIR)-operated nanoswitch based on chitosan nanoparticles (EpCAM-CS-co-PNVCL@IR780/IMQ NPs) that induces cascade immunogenic tumor ferroptosis via cytokine storm. The formulation was prepared by loading a photosensitiser (IR780) and an immunotherapeutic drug (imiquimod; IMQ) into temperature- and pH-responsive chitosan-based NPs functionalized with tumor-targeting aptamers. The EpCAM aptamer can chaperone the NPs selectively into cancer cells, and allow them to enter the cell nucleus.

View Article and Find Full Text PDF

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Engineered cell membrane vesicles loaded with lysosomophilic drug for acute myeloid leukemia therapy via organ-cell-organelle cascade-targeting.

Biomaterials

January 2025

Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China. Electronic address:

Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!