Constructing excited-state intermolecular proton transfer (ESIPT-e) fluorophores represents significant challenges due to the harsh requirement of bearing a proton donor-acceptor (D-A) system and their matching proton donating-accepting ability in the same molecule. Herein, we synthesized a new-type ESIPT-e fluorophor (2-APC) using the "four-component one-pot" reaction. By the installing of a cyano-group on pyridine scaffold, the proton donating ability of -NH was greatly enhanced, enabling 2-APC to undergo ESIPT-e process. Surprisingly, 2-APC exhibited dual-emissions in protic solvents ethanol and normal fluorescence in aprotic solvents, which is vastly different from that of conventional ESIPT-a dyes. The ESIPT emission can be obviously suppressed by Fe due to the coordination reaction of Fe with the A-D system in 2-APC. From this basis, a highly sensitive and selective method was established using 2-APC as a fluorescent probe, which offers the sensitive detection of Fe ranging from 0 to 13 μM with the detection limit of 7.5 nM. The recovery study of spiked Fe measured by the probe showed satisfactory results (97.2103.4%) with the reasonable RSD ranging from 3.1 to 3.8%. Moreover, 2-APC can also exhibit aggregation-induced effect in poor solvent or solid-state, eliciting strong red fluorescence. 2-APC was also applied to cell-imaging, exhibiting good cell-permeability, biocompatibility and color rendering. This multi-mode emission of 2-APC is significant departure from that of conventional extended p-conjugated systems and ESIPT dyes based on a flat and rigid molecular design. The "one-pot synthesis" strategy for the construction of ESIPT molecules pioneered a new route to achieve tricolor-emissive fluorophores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778147 | PMC |
http://dx.doi.org/10.3390/molecules27020516 | DOI Listing |
Molecules
November 2024
Institute of Physics, University of Rzeszów, 35-310 Rzeszów, Poland.
The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung, Biomolecular Sytems, Am Mühlenberg 1, 14476, Potsdam, GERMANY.
Energy transfer catalysis (EnT) has had a profound impact on contemporary organic synthesis enabling the construction of higher in energy, complex molecules, via efficient access to the triplet excited state. Despite this, intermolecular reactivity, and the unique possibility to access several reaction pathways via a central triplet diradical has rendered control over reaction outcomes, an intractable challenge. Extended chromophores such as non-symmetrical dienes have the potential to undergo [2+2] cycloaddition, [4+2] cycloaddition or geometric isomerisation, which, in combination with other mechanistic considerations (site- and regioselectivity), results in chemical reactions that are challenging to regulate.
View Article and Find Full Text PDFChem Asian J
December 2024
Bhabha Atomic Research Centre, Radiation and Photochemistry Division, Trombay, 400085, Mumbai, INDIA.
Perylene diimide (PDI) derivatives have been extensively explored as chromophoric dyes for functional organic materials. Here, the custom synthesized tyrosine appended perylene diimide (PDI-Tyr) derivative has shown strong aggregation in aqueous medium diminishing its emissive features, which was surpassed by the supramolecular interaction with β-cyclodextrin (β-CD). Complex formation between PDI-Tyr and β-CD, proposed from the absorption and emission studies, have been substantiated by the 1H-NMR, ITC and geometry optimization data.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
- exhibited significant aggregation-induced Emission (AIE) characteristics, including high brightness (αAIE ≈ 40), robust light stability, a substantial Stokes shift (128 nm), and a high signal-to-noise ratio, effectively overcoming aggregation-caused quenching (ACQ). Derived from the axially chiral -H-BINOL, - was synthesized via nucleophilic cyclization and exhibited pronounced self-assembly properties. Through robust intra- and intermolecular hydrogen bonding interactions, - formed diverse supramolecular structures, including spherical flower-like aggregates, hollow-core triangular tubules, hexagonal tubules, and irregular white block-like stacks.
View Article and Find Full Text PDFChemistry
December 2024
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, No. 381 Wushan Road, 510640, Guangzhou, P. R. China.
Organic conjugated molecules have gained widespread application as organic semiconductors due to their unique optoelectronic properties. The rigidity of these large conjugated structures facilitates strong intermolecular interactions, which significantly influence their properties in the solid state through various molecular arrangements. The study of the relationship among molecular arrangement, exciton behavior, and optoelectronic properties is an eternal research topic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!